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Section A

Question 1 (10%)
Consider a closed system of two particles of masses m1 and m2 located at r1 and r2

respectively. We suppose that the particles are moving (i.e. r1 and r2 depend on time
t).

(a) 2%Write the momentum P of the system in terms of m1, m2, ṙ1, and ṙ2.

(b) 3%Show that P does not depend on time.

(c) 2%Write the angular momentum AM of the system with respect to a fixed point M
located at rM of the system in terms of m1, m2, rM , r1, r2, ṙ1, and ṙ2.

(d) 3%Supposing that the inter-particle interactions are parallel to the straight line going
through the particles, show that AM does not depend on time.

Question 2 (15%)
Two particles P1 and P2 having same mass m collide. We suppose that before collision
particle P1 was at rest while particle P2 was moving with a velocity V and that after
collision, particle P1 has a velocity v1 and particle P2 has a velocity v2.

We suppose that the collision is elastic.

(a) 7%Prove that v2

1
+ v2

2
= V 2.

(b) 8%Prove that the velocities of the two particles after collision, v1 and v2, are orthog-
onal.
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Question 3 (20%)
Two identical particles of mass m are attached to three identical springs (modulus k
and unperturbed length L) as shown of figure 1. The left and right springs are also
attached to fixed supports. The distance between the fixed supports is denoted by D.
The particles can slide withouth friction on a horizontal plane.

We denote by xi and pi = miẋi the position and momentum of particle i (i = 1, 2),
respectively.

(a) 10%Write down the expression for the total energy H of the system in terms of xi and
pi (i = 1, 2).

(b) 10%Write down the 4 Hamiltonian equations of this system.
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Figure 1: 2 particle system
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Section B

Question 1 (20%)
A body of mass m is attached to the right end of a horizontal spring, the left end of the
spring is fixed. The spring has modulus k and unperturbed length L. The position of
the body on the x-axis is denoted by x(t).

The body can move inside a cylinder and is subject to a friction force given by:

Ffr = −αẋex,

where ex is the unit vector of the x-axis.

(a) 5%Find the equilibrium position x0 of the body.

(b) 5%Write down the equation of motion of the body.

(c) 4%Prove that m = α2

4k
corresponds to the case of critical damping.

(d) 6%In the case of critical damping, express the position x as a function of time, sup-
posing that the body starts its motion at t = 0 from the equilibrium position x0

with velocity v0.
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Figure 2: Shock absorber

Question 2 (15%)
Consider the following dynamical system.

{

φ̇ = (φ− 1)(ψ + 1),

ψ̇ = (φ+ 1)(ψ − 1).

(a) 5%Find all the fixed points of this dynamical system.

(b) 10%Examine the stability of each fixed point.
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Section C

Question 1 (20%)
We consider the Sun and Mars as two particles separated by a fixed distance d. The Sun
is supposed fixed while Mars is rotating about it with a fixed angular velocity ω. We
neglect all forces exerted on Mars except the gravitational attraction of the Sun.

The mass of the Sun is M and the mass of Mars is m. We will consider a reference frame
attached to the Sun.

(a) 2%Write the relation between ω and the period of rotation of Mars around the Sun,
T .

(b) 3%Write the coordinates of Mars (x(t), y(t)) in terms of ω, d, and t, supposing that
(x(0), y(0)) = (d, 0).

(c) 4%Find the coordinates (ax, ay) of the acceleration a of Mars in terms of ω, d, and t.

(d) 4%Find the coordinates (Fx, Fy) of the gravitational force F exerted by the Sun on
Mars in terms of M , m, the graviational constant G, d, ω, and t.

(e) 5%Apply the second Newton law and find relation between ω, d, M , and G.

(f) 2%Having the following approximations, give and estimation of T expressed in days.

G ≈ 6.67 10−11m3kg−1s−2, d ≈ 227 109m, M ≈ 2 1030kg.

Question 2 (15%)
A meteorite, assimilated to a particle, starts moving towards the Earth from an infinitely
large distance with an initial velocity v0. We suppose that the mass m of the meteorite is
very small compared to the mass M of the Earth and that the meteorite is only subject
to the gravitational attraction of the Earth.

Express the velocity v1 of the meteorite when it hits the surface of the Earth in terms
of v0, M , the radius fo the Earth, R, and the gravitational constant, G.
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Theoretical mechanics : summary

Kinematics

1. Position vector r, velocity v, and acceleration of a particle are related by:

v = ṙ,

a = v̇ = r̈.

2. 1D motion with constant velocity v:

x = vt+ x0

3. 1D motion with a constant acceleration a:

v = at+ v0,

x =
a

2
t2 + v0t+ x0,

where x0 and v0 are the position and velocity at t = 0, respectively.

4. Rotation with constant angular velocity ω (frequency ν = ω
2π

) along a circle of radius
R:

• polar coordinates
{

r = R,

θ = ωt+ θ0,

• Cartesian coordinates:
{

x = R cos(ωt+ θ0),
y = R sin(ωt+ θ0),

• linear velocity:
v = Rω,

• acceleration:
a = Rω2,

where θ0 is the value of θ at t = 0.

5. Rotation with constant angular acceleration α:

ω = αt+ ω0,

θ =
α

2
t2 + ω0t+ θ0,

where ω is the angular velocity, θ is the angular coordinate, ω0 is the angular velocity
at t = 0, and θ0 is the angular coordinate at t = 0.
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Dynamics

1. Newton’s Second Law:
ma = F.

2. For a sliding body, the friction force is Frf = kN , where N is the normal reaction force.
It is oriented in the opposite sense of the motion.

3. Conserved quantities:

• linear momentum
P =

∑

i

mivi,

• angular momentum with respect to the origin

AO =
∑

i

miri × ṙi,

• angular momentum with respect to an arbitrary point P

AP =
∑

i

mi(ri − rP ) × ṙi,

• total energy

E = U(x1, x2, . . .) +
∑

i

miv
2

i

2
,

where U is the potential energy.

4. A conservative force F and the corresponding potential energy U are related by

F = ∇U.

5. The potential energy and force for a spring of modulus k and unperturbed length L

are

U =
k(L′ − L)2

2
,

F = k|L′ − L|,

where L′ is the current length of the spring. The direction of F is such that it tries to
bring the spring back to its unperturbed configuration.

6. The potential energy U and force F for a particle of mass m located at a height H, in
the Earth’s gravitational field are

• locally:
U = mgH, F = mg,
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• globally

U = −
GMEm

RE +H
, F = −

GMEm

(RE +H)2

OP

OP
.

where G is the gravitational constant, ME is the Earth’s mass, RE is the Earth’s
radius, O is the Earth’s center, and P is the particle position.

G ≈ 6.7 × 10−11m3kg−1s−2, ME ≈ 6.0 × 1024kg, RE ≈ 6.4 × 106m.

7. The angular velocity of a body rotating along a circular orbit around a much heavier
body of mass M is

ω =

√

GM

R3

where R is the orbit radius.

Oscillations

The equation of forced linear pendulum with small amplitude is

φ̈+ 2cφ̇+ ω2φ = F0 cos(Ωt),

where c is the friction coefficient, ω2 = L
g

is the natural frequency of the pendulum, L is the
length of the pendulum, F0 and Ω0 are the amplitude and frequency of the external forcing.

Hamiltonian mechanics

1. The Hamiltonian equations are:
{

ẋj = ∂H
∂pj
,

ṗj = − ∂H
∂xj
,

1 ≤ j ≤ n

2. The Poisson brackets of functions F (x1, . . . , xn, p1, . . . , pn) and G(x1, . . . , xn, p1, . . . , pn)
are

{F,G} =
n

∑

i=1

(

∂F

∂pj

∂G

∂xj

−
∂F

∂xj

∂G

∂pj

)

.

3. A transformation

x′i = x′i(x1, . . . , xn, p1, . . . , pn), p′i = p′i(x1, . . . , xn, p1, . . . , pn),

is canonical if and only if

{x′i, p
′

k} =

{

−1 if i = k,

0 if i 6= k,

{x′i, x
′

k} = 0,

{p′i, p
′

k} = 0.

4. The Lagrangian equations are

d

dt

(

∂L

∂ẋj

)

−
∂L

∂xj

0, 1 ≤ j ≤ n.
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Stability of dynamical systems

Let xF be a fixed point of a dynamical system ẋ = f(x), where

x =











x1

x2

...
xk











, f =











f1(x1, . . . , xk)
f2(x1, . . . , xk)

...
fk(x1, . . . , xk)











.

Then,

J =











∂f1

∂x1

∂f1

∂x2

· · · ∂f1

∂xk
∂f2

∂x1

∂f2

∂x2

· · · ∂f2

∂xk

...
...

. . .
...

∂fk

∂x1

∂fk

∂x2

· · · ∂fk

∂xk











,

is the Jacobian matrix of the system at xF , with λ1, λ2,..., λk being its eigenvalues.

• If Re(λj) < 0 for all j then xF is asymptotically stable.

• If Re(λj) > 0 for some j then xF is unstable.

• If Re(λj) < 0 for some j, and Re(λj) = 0 for the remaining j, then the test is incon-
clusive.
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