Inelastic Collisions

Question 1 Three particles, of masses 1 kg, 3 kg, and 2 kg, simultaneously collide.

Before the collision, the middle particle was motionless, whereas the velocities of the other two were 1 m s^{-1} and -3 m s^{-1} (see the diagram). Assuming that the particles collide non-elastically and coalesce, find their velocity after the collision. Which way will they be moving? *Paper 2006.*

Question 2 Three particles, of masses 4 kg, 3 kg, and 2 kg, simultaneously collide.

Before the collision, the middle particle was motionless, whereas the velocities of the other two were 1 m s^{-1} and -3 m s^{-1} (see the diagram). Assuming that the particles collide non-elastically and coalesce, find their velocity after the collision and the amount of mechanical energy lost in the collision *Paper 2007*.

Question 3 Consider a closed system of two particles of masses m_1 and m_2 located at \mathbf{r}_1 and \mathbf{r}_2 respectively. We suppose that the particles are moving (i.e. \mathbf{r}_1 and \mathbf{r}_2 depend on time t).

- (a) Write the momentum **P** of the system in terms of m_1 , m_2 , $\dot{\mathbf{r}}_1$ and $\dot{\mathbf{r}}_2$.
- (b) Show that \mathbf{P} does not depend on time.

Paper 2009.

Question 4 Two particles of masses m_1 and $m_2 = 2m_1$ collide. Their velocities before the collision are \mathbf{v}_1 and \mathbf{v}_2 are orthogonal as shown in the figure. Assuming that the system is closed and that the particles collide non-elastically and coalesce:

- (a) Find their velocity \mathbf{v} after the collision, in terms of \mathbf{v}_1 and \mathbf{v}_2 .
- (b) Find $\cos \alpha$ in terms of \mathbf{v}_1 , and \mathbf{v}_2 , where α is the angle between \mathbf{v}_1 and \mathbf{v} .

