Kinematics

Question 1 The Cartesian coordinates of a particle on the plane are given by

 $x = t \cos t$ $y = -t \sin t$ $t: 0 \to \pi$

Find the velocity and acceleration of the particle. 2005 paper.

Question 2 A cyclist sets out with velocity $v_0 = 30 \text{ km hr}^{-1}$, and decelerates with $a = -10 \text{ km hr}^{-2}$ until he stops. He rests for one hour and then cycles in the opposite direction for four hours with constant velocity $v_1 = 20 \text{ km hr}^{-1}$.

- (a) Draw the graphs of the velocity and displacement of the cyclist vs. time.
- (b) Find how far the cyclist ends up from his starting point.
- (c) Find the total distance covered by the cyclist and his mean velocity.

2005 paper.

Question 3

A stone is thrown with velocity v_0 , at an angle α to the horizontal, from a 'step' of height H. Calculate the xcoordinate of the point where the stone hits the ground.

2005 paper.

Question 4

A stone is projected (under gravity, with air friction neglected) with velocity v_0 , at an angle α to the horizon, towards a 'step' of height H:

- (a) Assuming the stone goes over the step, calculate y_{max} (the maximum height of the stone's trajectory) and x_H (the *x*-coordinate of the point where it hits the ground).
- (b) Determine for which v_0 the stone would go over the step.

2006 paper.

A stone is projected (under gravity, with air friction neglected) with velocity v_0 , at an angle α to the horizon, towards a 'pit' of depth *H* located at a distance *L*.

- (a) Determine for which v_0 the stone would reach the pit.
- (b) Assuming that the stone reaches the pit, calculate x_* (the *x*-coordinate of the point where the stone hits the ground) and y_{max} (the maximum height of the trajectory).

2007 paper.

Question 6

A stone is projected (under gravity, with air friction neglected) with velocity v_0 , at an angle α to the horizon, towards a 'pit' of width ΔL located at a distance L. Find the values of α for which the stone ends up inside the pit.

2008 paper.