
MS4414 Midterm

Answer all three questions

Thursday 10th March 2011

Question 1. The Cartesian coordinates of a particle on the plane are givenby

x = (1 + t) cos t, y = 2 (1 + t) sin t, t : 0 → π.

Find the velocity and acceleration of the particle, and sketch its trajectory (show as much
detail as possible).

Question 2. A stone is thrown with velocityv0, at an angleα to the horizontal, from height
H, as shown in the diagram below.

x

H
α

v0

y

Calculate: (a) thex-coordinate of the point where the stone hits the ground, (b)the speed at
which the stone hits the ground.

Question 3. A slingL metres long, with a stone of mass,m kilograms, is being rotated with
angular velocityω radians per second. Find the period of the rotations, the linear velocity and
the acceleration of the stone.

Theoretical Mechanics: Summary

Kinematics

1. Position vectorr, velocityv, and accelerationa of a particle are related by:

v = ṙ, a = v̇ = r̈.
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2. 1D motion with constant velocityv:

x = vt+ x0.

3. 1D motion with constant accelerationa:

v = at+ v0, x = 1

2
at2 + v0t+ x0,

wherex0 andv0 are the position and velocity att = 0, respectively.

4. Rotation with constant angular velocityω (frequencyν = ω
2π

) along a circle of radius
R:

• polar coordinates
r = R, θ = ωt+ θ0,

• Cartesian coordinates

x = R cos(ωt+ θ0) , y = R sin(ωt+ θ0) ,

• linear velocity
v = Rω,

• acceleration
a = Rω2,

whereθ0 is the value ofθ at t = 0.

5. Rotation with constant angular accelerationα:

ω = αt+ ω0, θ = 1

2
αt2 + ω0t+ θ0,

whereω is the angular velocity,θ is the angular coordinate,ω0 is the angular velocity
at t = 0, andθ0 is the angular coordinate att = 0.

Dynamics

1. Newton’s second law:
ma = F.

2. For a sliding body, the friction force isFrf = kN , whenN is the normal reaction force.
It is oriented in the opposite sense of the motion.

3. Conserved quantities:

• linear momentum
P =

∑

i

mivi,
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• angular momentum with respect to the origin

AO =
∑

i

miri × ṙi,

• angular momentum with respect to an arbitrary pointP

AP =
∑

i

mi (ri − rP )× ṙi,

• total energy
E = U(x1, x2, . . .) +

∑

i

1

2
miv

2

i ,

whereU is the potential energy.

4. A conservative forceF and the corresponding potential energyU are related by

F = −∇U.

5. The potential energy and force for a spring of modulusk, and unperturbed lengthL0

are
U = 1

2
k (L− L0)

2
, F = −k (L− L0) ,

whereL is the current length of the spring. The direction ofF is such that it tries to
bring the spring back to its unperturbed configuration.

6. The potential energyU and forceF for a particle of massm located at a heightH, in
the Earth’s gravitational field are

• locally:
U = −mgH, F = mg,

• globally:

U = −
GMEm

RE +H
, F = −

GMEm

(RE +H)2
er,

whereG is the gravitational constant,ME is the Earth’s mass,RE is the Earth’s
radius,er is a radial unit vector.G = 6.7×10−11 m3 kg−1 s−2,ME = 6.0×1024 kg,
andRE = 6.4× 106 m.

• The angular velocity of a body rotating along a circular orbit around a much heav-
ier body of massM is

ω =

√

GM

R3

whereR is the orbit radius.
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Oscillations

The equation of a forced linear pendulum with small amplitude is

φ̈+ 2cφ̇+ ω2φ = F0 cos(Ω0t) ,

wherec is the friction coefficient,ω2 = L
g

is the natural frequency of the pendulum,L is the
length of the pendulum,F0 andΩ0 are the amplitude and frequency of the external forcing.

Hamiltonian mechanics

1. The Hamiltonian equations are

ẋj =
∂H

∂pj
, ṗj = −

∂H

∂xj

, 1 ≤ j ≤ n.

2. The Poisson brackets of functions

{F,G} =
n

∑

i=1

(

∂F

∂pi

∂G

∂xi

−
∂F

∂xj

∂G

∂pj

)

.

3. A transformation

x′

i = x′

i(x1, . . . , xn, p1, . . . , pn) , p′i = p′i(x1, . . . , xn, p1, . . . , pn) ,

is canonical if and only if

{x′

i, p
′

k} = −δik, {x′

i, x
′

k} = 0, {p′i, p
′

k} = 0.

4. The Lagrangian equations are

d
dt

(

∂L

∂ẋj

)

−
∂L

∂xj

= 0, 1 ≤ j ≤ n.

Stability of dynamical systems

Let xF be a fixed point of a dynamical systeṁx = f(x), where

x =











x1

x2

...
xk











, f =











f1(x1, . . . , xk)
f2(x1, . . . , xk)

...
fk(x1, . . . , xk)











.

Then,

J =











∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xk

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xk

...
...

. . .
...

∂fk
∂x1

∂fk
∂x2

. . . ∂fk
∂xk











,

is the Jacobian matrix of the system atxF, with eigenvaluesλ1, λ2, . . . ,λk.
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• If ℜ(λj) < 0 for all j thenxF is asymptotically stable.

• If ℜ(λj) > 0 for somej thenxF is unstable.

• If ℜ(λj) < 0 for somej, andℜ(λj) = 0 for the remainingj, then the test is inconclu-
sive.
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