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1 Introduction

Newton’s equations describe all mechanical systems. However sometimes it is convenient

to use an alternative formulation using the Lagrangian or Hamiltonian equations of motion.

These formulations are useful when the systems are best described by unusual coordinate

systems.

A simple example is a pendulum which is best described by equations of motion for the

pendulum angle θ.

N.B. Neither Lagrangian nor Hamiltonian mechanics can handle friction.
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2 The Principle of Least Action

Action The action of a system S can be calculated from the Lagrangian L:

SAB =

∫ B

A

L(t) dt (1)

The Lagrangian is given by

L = K − V (2)

where K is kinetic energy and V is the potential energy

Lagrangian Equations of Motion Lagrange’s equations of motion are derived by finding

a trajectory x(t) which minimises the action

S =

∫ B

A

L(t, x, ẋ) dt (3)

If x(t) is the minimal trajectory then S is unchanged if x(t) → x(t) + δx(t) where δx(tA) =

δx(tB) = 0.

S + δS =

∫ B

A

L(t, x+ δx, ẋ+ δẋ) dt (4)

where δẋ = d δx
dt

S + δS =

∫ B

A

[

L(t, x, ẋ) +
∂L

∂x
δx+

∂L

∂ẋ
δẋ

]

dt (5)

Subtracting S from either side

δS =

∫ B

A

[

∂L

∂x
δx+

∂L

∂ẋ
δẋ

]

dt (6)

Rewriting the second term

δS =

∫ B

A

[

∂L

∂x
δx+

∂L

∂ẋ

d δx

dt

]

dt (7)

If x(t) is the particle trajectory, which minimises S, then δS = 0 i.e.

0 =

∫ B

A

[

∂L

∂x
δx+

∂L

∂ẋ

d δx

dt

]

dt (8)

Integrate the second term by parts (boundary term is zero because

δx(tA) = δx(B) = 0)

0 =

∫ B

A

[

∂L

∂x
δx−

d

dt

∂L

∂ẋ
δx

]

dt (9)

0 =

∫ B

A

[

∂L

∂x
−

d

dt

∂L

∂ẋ

]

δx dt (10)
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This integral must be zero for any (small) choice of δx(t). The only way this can be true is if

the term in square brackets is zero. Thus Lagrange’s equations of motion are

d

dt

∂L

∂ẋ
=

∂L

∂x
(11)

Remember that the Lagrangian is given by L = T − V where T is kinetic energy, and V is

potential energy.

In the case where a system is described not by a single coordinate x but by a collection of

coordinates qi, i = 1 . . . n, there are n Lagrangian equations of motion each of the form

d

dt

∂L

∂q̇i
=

∂L

∂qi
(12)

The coordinates qi do not have to be the Cartesian coordinates of the particles making up the

system. They can be any sort of coordinate, e.g. the angle of a pendulum, the distance a par-

ticle travels along a magnetic field line. This is the power of the Lagrangian and Hamiltonian

approaches.

3 Examples

Some examples to show that Lagrangian mechanics and Newtonian mechanics are equivalent.

Free Particle According the Newton’s first law a particle on which no forces are acting will

move at constant velocity.

L(ẋ, x, t) =
m

2
ẋ2

Lagrangian equations of motion

d

dt

(

∂L

∂ẋ

)

=
∂L

∂x

Substituting in the Lagrangian for a free particle

mẍ = 0

Integrate

ẋ = const.

in agreement with Newton’s second law.
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Particle in a conservative force field A particle of mass, m moves in a conservative force-

field with potential energy V (x). Newton’s second law states that the

mẍ = −∇V

The Lagrangian of the system

L(ẋ,x) =
m

2
ẋ2

− V (x)

Lagrangian equations of motion

d

dt

∂L

∂ẋi

=
∂L

∂xi

, i = 1, 2, 3

substitute in the Lagrangian

mẍi = −
∂V

∂xi

write in vector form

mẍ = −∇V

Pendulum The equations of motion of pendulum with a large angle of oscillation are hard

to derive from Newton’s Laws. They are simple (simpler!) to derive in the Lagrangian frame-

work. If the length of the pendulum is r and the angle is θ (θ = 0 is the ground state of the

pendulum)

mg

T

ma
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T =
1

2
mr2θ̇2 (13)

V = mgr (1− cos θ) (14)

L =
1

2
mr2θ̇2 −mgr (1− cos θ) (15)

∂L

∂θ
= −mgr sin θ (16)

∂L

∂θ̇
= mr2θ̇ (17)

d

dt

∂L

∂θ̇
= mr2θ̈ (18)

Thus the Lagrangian equations of motion are

mr2θ̈ = −mgr sin θ (19)

As mentioned above, Lagrangian equations of motion can only be derived for systems with-

out friction (otherwise a potential energy cannot be defined). If I want to derive equations

for a pendulum with friction in the Lagrangian framework I have to derive the friction free

equations and then return to the Newtonian framework to add in friction terms by hand.

mr2θ̈ = −mgr sin θ − γmrθ̇ (20)

Exam Question (2008r) Consider a one-dimensional system which consists of two parti-

cles of masses m1 and m2, with coordinates x1 and x2 (x1 < x2) interacting through gravity.

Write down the expression for the Lagrangian of the system and derive the Lagrangian form

of the governing equations.

Kinetic energy: K =
m1

2
ẋ2

1
+

m2

2
ẋ2

2

Potential energy: V = −
Gm1m2

x2 − x1

Lagrangian: L =
m1

2
ẋ2

1
+

m2

2
ẋ2

2
+

Gm1m2

x2 − x1

Lagrangian equations of motion

d

dt

(

∂L

∂ẋi

)

=
∂L

∂xi

, i = 1, 2.
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Particle 1: m1ẍ1 =
Gm1m2

(x2 − x1)
2

Particle 2: m2ẍ2 = −
Gm1m2

(x2 − x1)
2

Exam Question 2007r Consider a one-dimensional system which consists of three particles

of masses m1, m2, and m3, with coordinates x1, x2, and x3

(x1 ≤ x2 ≤ x3) connected by two identical springs of modulus µ and free length L:

x1 x2 x3

Write down the expression for the Lagrangian L of the system, and derive the Lagrangian

form of the governing equations.

Kinetic energy: K =
m1

2
ẋ2

1
+

m2

2
ẋ2

2
+

m3

2
ẋ2

3

Potential energy: V =
µ

2
(x3 − x2 − L)2 +

µ

2
(x2 − x1 − L)2

Lagrangian:

L =
m1

2
ẋ2

1
+

m2

2
ẋ2

2
+

m3

2
ẋ2

3
−

µ

2
(x3 − x2 − L)2 −

µ

2
(x2 − x1 − L)2

Lagrangian equations of motion:

d

dt

(

∂L

∂ẋi

)

=
∂L

∂xi

, i = 1, 2, 3.

m1ẍ1 = µ (x3 − x2 − L)

m2ẍ2 = −µ (x3 − x2 − L) + µ (x2 − x1 − L)

m3ẍ3 = −µ (x2 − x1 − L)
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4 Conserved Quantities

4.1 Conservation of Momentum

If there a collection of particles only interact with each other

0 =
∑

α

∂L

∂xi,α

Using the Lagrangian equations of motion

0 =
∑

α

d

dt

(

∂L

∂ẋi,α

)

Integrate

const =
∑

α

∂L

∂ẋi,α

For standard systems

L =
∑

α

m

2
ẋ2

α − V (xα)

const =
∑

α

∂L

∂ẋi,α

=
∑

α

mαẋi,α

Or

const =
∑

α

mαẋα

i.e. conservation of momentum.

4.2 Conservation of Angular Momentum

The Lagrangian should be unchanged when positions xi,α and velocities are rotated through

an angle δφ:

xα → xα + δφ× x, ẋα → ẋα + δφ× ẋ

0 =
∂L

∂xα

· δφ× xα +
∂L

∂ẋα

· δφ× ẋα

Cycle the triple product
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0 = δφ ·
∑

α

[

xα ×
∂L

∂xα

+ ẋα ×
∂L

∂ẋα

]

Apply the Lagrangian equations of motion

0 = δφ ·
∑

α

[

xα ×
d

dt

(

∂L

∂ẋα

)

+ ẋα ×
∂L

∂ẋα

]

Valid for arbitrary δφ

0 =
∑

α

[

xα ×
d

dt

(

∂L

∂ẋα

)

+ ẋα ×
∂L

∂ẋα

]

∂L

∂ẋα

= mαẋα

0 =
d

dt

∑

α

[

xα ×
∂L

∂ẋα

]

0 =
d

dt

∑

α

[xα × (miẋα)]

I.e. conservation of angular momentum.
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