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1 Module Description

Module MS4414, Theoretical Mechanics

Hours per week Lectures 2. Tutorial 1. Private study 7. ECTS Credits 6.

Grading type N.

Prerequisite Modules MS4613, MS4403.

Rationale and Purpose of the Module To introduce students to the fundamental concepts

of theoretical mechanics. To prepare students by developing the basic mathematical skills in

theoretical mechanics. To emphasise applications of vector calculus and ODEs.

Syllabus Kinematics: reference frames, motion in one dimension, motion with constant ac-

celeration, kinematics in three dimensions, uniform circular motion, centripetal acceleration.

Dynamics: mass, force, Newton’s laws of motion, friction, Newton’s law of gravity, planetary

motion. Conservation laws: momentum, angular momentum, energy (kinetic energy, poten-

tial energy as gradient of force). Oscillatory motion: free and forced pendulum, resonance,

parametric resonance. Introduction to the Hamiltonian and Lagrangian mechanics.
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Learning Outcomes

1. Understand basic mechanical concepts, such as reference system, velocity, acceleration

and force.

2. Understand and be able to apply Newton’s Laws.

3. Understand and be able to apply the concepts of momentum and energy and their con-

servation.

4. Be able to apply Newton’s Law of gravity to basic problems of celestial mechanics.

5. Understand the basic concepts of the Hamiltonian approach to mechanics, such as

Hamiltonians, Hamiltonian equations, and Poisson brackets.

6. Understand the concept of stability and be able to apply it to basic mechanical problems.

Prime Texts

• P. Smith, R. C. Smith (1996). Mechanics, Wiley.

• F. Scheck (1999). From Newton’s Laws to Deterministic Chaos, Springer.

2 Timetable

Monday 1700 Lecture CO078 Weeks 1-9 and 11-14

Thursday 0900 Lecture CO078 Weeks 1-9 and 11-14

Thursday 1300 Tutorial S117 Weeks 1-9 and 11-14

Office Hours ???? A2016a.

Advanced class ????.

www.industrial-maths.com/wlee/ms4414.html William Lee
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3 Assessment

The course will be graded as follows:

20% of the marks will be given for a midterm paper.

80% of the marks will be given for a end of term exam.

www.industrial-maths.com/wlee/ms4414.html William Lee
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Theoretical Mechanics: Summary

Kinematics

1. Position vector r, velocity v, and acceleration a of a particle are related by:

v = ṙ, a = v̇ = r̈.

2. 1D motion with constant velocity v:

x = vt+ x0.

3. 1D motion with constant acceleration a:

v = at+ v0, x = 1

2
at2 + v0t+ x0,

where x0 and v0 are the position and velocity at t = 0, respectively.

4. Rotation with constant angular velocity ω (frequency ν = ω
2π

) along a circle of radius

R:

• polar coordinates

r = R, θ = ωt+ θ0,

• Cartesian coordinates

x = R cos(ωt+ θ0) , y = R sin(ωt+ θ0) ,

• linear velocity

v = Rω,

• acceleration

a = Rω2,

where θ0 is the value of θ at t = 0.

www.industrial-maths.com/wlee/ms4414.html William Lee
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5. Rotation with constant angular acceleration α:

ω = αt+ ω0, θ = 1

2
αt2 + ω0t+ θ0,

where ω is the angular velocity, θ is the angular coordinate, ω0 is the angular velocity

at t = 0, and θ0 is the angular coordinate at t = 0.

Dynamics

1. Newton’s second law:

ma = F.

2. For a sliding body, the friction force is Frf = kN , when N is the normal reaction force.

It is oriented in the opposite sense of the motion.

3. Conserved quantities:

• linear momentum

P =
∑

i

mivi,

• angular momentum with respect to the origin

AO =
∑

i

miri × ṙi,

• angular momentum with respect to an arbitrary point P

AP =
∑

i

mi (ri − rP )× ṙi,

• total energy

E = U(x1, x2, . . .) +
∑

i

1

2
miv

2

i ,

where U is the potential energy.

4. A conservative force F and the corresponding potential energy U are related by

F = −∇U.

www.industrial-maths.com/wlee/ms4414.html William Lee
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5. The potential energy and force for a spring of modulus k, and unperturbed length L0

are

U = 1

2
k (L− L0)

2
, F = −k (L− L0) ,

where L is the current length of the spring. The direction of F is such that it tries to

bring the spring back to its unperturbed configuration.

6. The potential energy U and force F for a particle of mass m located at a height H , in

the Earth’s gravitational field are

• locally:

U = −mgH, F = mg,

• globally:

U = −
GMEm

RE +H
, F = −

GMEm

(RE +H)2
er,

where G is the gravitational constant, ME is the Earth’s mass, RE is the Earth’s

radius, er is a radial unit vector. G = 6.7×10−11 m3 kg−1 s−2, ME = 6.0×1024 kg,

and RE = 6.4× 106 m.

• The angular velocity of a body rotating along a circular orbit around a much heav-

ier body of mass M is

ω =

√

GM

R3

where R is the orbit radius.

Oscillations

The equation of a forced linear pendulum with small amplitude is

φ̈+ 2cφ̇+ ω2φ = F0 cos(Ω0t) ,

where c is the friction coefficient, ω2 = L
g

is the natural frequency of the pendulum, L is the

length of the pendulum, F0 and Ω0 are the amplitude and frequency of the external forcing.

www.industrial-maths.com/wlee/ms4414.html William Lee
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Hamiltonian mechanics

1. The Hamiltonian equations are

ẋj =
∂H

∂pj
, ṗj = −

∂H

∂xj

, 1 ≤ j ≤ n.

2. The Poisson brackets of functions

{F,G} =
n

∑

i=1

(

∂F

∂pi

∂G

∂xi

−
∂F

∂xi

∂G

∂pi

)

.

3. A transformation

x′

i = x′

i(x1, . . . , xn, p1, . . . , pn) , p′i = p′i(x1, . . . , xn, p1, . . . , pn) ,

is canonical if and only if

{x′

i, p
′

k} = −δik, {x′

i, x
′

k} = 0, {p′i, p
′

k} = 0.

4. The Lagrangian equations are

d

dt

(

∂L

∂ẋj

)

−
∂L

∂xj

= 0, 1 ≤ j ≤ n.

Stability of dynamical systems

Let xF be a fixed point of a dynamical system ẋ = f(x), where

x =

















x1

x2

...

xk

















, f =

















f1(x1, . . . , xk)

f2(x1, . . . , xk)
...

fk(x1, . . . , xk)

















.

Then,

J =

















∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xk

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xk

...
...

. . .
...

∂fk
∂x1

∂fk
∂x2

. . . ∂fk
∂xk

















,

is the Jacobian matrix of the system at xF, with eigenvalues λ1, λ2, . . . , λk.
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• If ℜ(λj) < 0 for all j then xF is asymptotically stable.

• If ℜ(λj) > 0 for some j then xF is unstable.

• If ℜ(λj) < 0 for some j, and ℜ(λj) = 0 for the remaining j, then the test is inconclu-

sive.

www.industrial-maths.com/wlee/ms4414.html William Lee
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