Integration, Exercises

Sofiane Soussi and William Lee william.lee@ul.ie http://www.ul.ie/wlee/ma4005.html

September 30, 2010

Question 1 Evaluate the following integrals:

- (i) $\int (3x^2 + 2x)dx$
- (ii) $\int (\sin x + \cos x) dx$
- (iii) $\int (e^x + e^{-x}) dx$
- (iv) $\int (x+2)^2 dx$

Question 2 Use the method of integration by parts to evaluate:

- (i) $\int x \sin x dx$
- (ii) $\int e^x \cos x dx$
- (iii) $\int x e^x dx$
- (iv) $\int x^2 \sin(2x) dx$
- (v) $\int x \ln x dx$
- (vi) $\int \sqrt{x} \ln x dx$

Question 3 By choosing a suitable substitution, evaluate the following integrals.

(i) $\int t(t^2 - 1)^3 dt$

(ii)
$$\int \frac{(\sqrt{u}+3)^4}{\sqrt{u}} du$$

- (iii) $\int \sqrt{1-x^2} dx$
- (iv) $\int \sqrt{1+x^2} dx$

(v)
$$\int \frac{dx}{\sqrt{x}(1+\sqrt{x})^2}$$

(vi)
$$\int e^x \cos(e^x + 2) dx$$

Question 4 Integrate the following by making use of the 't' substitution.

(i)
$$\int \frac{dx}{\sin x + 2\cos x}$$

(ii)
$$\int \frac{\sin x}{\sin^2 x - 2\cos x} dx$$

(iii)
$$\int \frac{dx}{1+2\sin x}$$

Question 5 For each of the following complete the square on the denominator and then evaluate the integral.

(i) $\int \frac{dt}{t^2+4t+5}$

(ii)
$$\int \frac{dt}{2t^2+3t+2}$$

(iii) $\int \frac{2tdt}{3t^2+6t+9}$

Question 6 In each of the following express the integrand as a sum of partial fractions. Then do the actual integral.

(i)
$$\int \frac{dx}{x^2 - 3x + 2}$$

(ii)
$$\int \frac{dx}{x^3 - x^2 - x + 1}$$

(iii)
$$\int \frac{2x+1}{x^3-1} dx$$

Question 7 Evaluate the following integrals using any method that is convenient.

- (i) $\int \frac{x}{(x+1)^3} dx$
- (ii) $\int \frac{4\sin x 3\cos x}{2\sin x + \cos x} dx$
- (iii) $\int \frac{\cos^8 x}{\sin^3 2x} dx$
- (iv) $\int \frac{e^{2t}}{\sqrt{1+e^{2t}}} dt$
- (v) $\int \frac{x}{x^3 5x^2 + 8x 4} dx$

(vi)
$$\int \frac{x^2}{\sqrt{x^3-3}} dx$$

- (vii) $\int (1-x^2)^{\frac{3}{2}} dx$
- (viii) $\int \cos x \sin^5 x dx$
- (ix) $\int \sin(3x) \sin(8x) dx$

Question 8 For each of the following functions sketch the graph and then find the area of the surface enclosed between the curve of the function and the x axis for $x \in [a, b]$.

(i) $f_1(x) = x^2 - 4, a = -3, b = 1.$

(ii)
$$f_2(x) = \ln(x), a = \frac{1}{2}, b = 2.$$

Question 9 Find the length of the curve of the function f, for $x \in [0, \ln(2)]$, where $f(x) = \cosh(x)$.

We recall that :

$$\cosh(x) = \frac{e^x + e^{-x}}{2}, \quad \sinh(x) = \frac{e^x - e^{-x}}{2}$$
$$\cosh'(x) = \sinh'(x), \quad \sinh'(x) = \cosh'(x).$$

Question 10 Let f_1 and f_2 be defined by:

$$f_1(x) = \sqrt{x}, \qquad f_2(x) = x^2.$$

- (i) Sketch the curves of the functions f_1 and f_2 .
- (ii) Find the volume obtained by rotating the surface enclosed between the curves of f_1 and f_2 for $x \in [0, 1]$ about the x axis.

Question 11 For each of the two following cases answer the questions (i), (ii), (iii).

- (a) $f(x) = x^2, g(x) = 1.$
- (b) $f(x) = x^2 2x, g(x) = x.$
 - (i) Sketch the curves of f and g.
 - (ii) Find the area of the surface enclosed between the two curves for $x \in [0, 1]$ in case (a) and for $x \in [0, 3]$ in case (b).
- (iii) Find the volume obtained by rotating the previous surfaces about the x axis.

Question 12 For each of the following cases, sketch the curves of f and g, then find the coordinates (\bar{x}, \bar{y}) of the centroid of the surface enclosed between the curves of f and g for $x \in [a, b]$.

- (a) $f(x) = e^x$, g(x) = e, a = 0, b = 1.
- (b) $f(x) = 8 x^2$, g(x) = 2x, a = 0, b = 2.

Question 13

(i) Sketch the curves of the functions f and g for $x \in [-1, 2]$, where

$$f(x) = e^x, \qquad g(x) = e.$$

- (ii) Find the moment of inertia I_y about the y axis of the surface enclosed by the two curves for $x \in [0, 1]$.
- (iii) Find the corresponding radius of gyration k_y .
- (iv) Find the moment of inertia I_x about the x axis of the same surface.
- (v) Find the corresponding radius of gyration k_x .
- (vi) Redefine the boundary of the area using two functions h and k of the form:

$$x = h(y), \qquad x = k(y).$$

- (vii) Find the moment of inertia J_x about the x axis of the same surface using the new boundary.
- (viii) Find the corresponding radius of gyration l_x .
- (ix) Compare I_x and k_x with J_x and l_x .
- (x) Find the moment of inertia I_0 about the origin.
- (xi) Find the Radius of gyration k_0 about the origin.