- 1. Find the first partial derivatives of the following functions.
 - (a) $f(x,y) = e^{2x+y} + x^3y$
 - (b) $f(x,y) = x \ln y$ (c) $f(x,y) = \frac{1}{2}$

(c)
$$f(x,y) = \frac{1}{(4x+2y^3)}$$

(d)
$$f(x,y) = \cos(x/y)$$

- 2. Find the second partial derivatives of the following functions.
 - (a) $f(x, y) = \sin(x + y^2)$

(b)
$$f(x,y) = (x-y)^4$$

- 3. The equation of an ideal gas is PV = nRT where P is pressure, V is volume, n is amount, R is the ideal gas constant and T is temperature. A fixed amount of gas is held in a container which is being heated at a rate of $1 \,\mathrm{K \, s^{-1}}$ and contracted at a rate of $0.01 \,\mathrm{m^3 \, s^{-1}}$. Given that the amount of gas in the container is 5 mol and currently the volume is $0.2 \,\mathrm{m^3}$ and the temperature is 300 K, what is the rate of change of the pressure? ($R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$.)
- 4. For each of the following complete the square on the denominator and then evaluate the integral.
 - (a) $\int \frac{dt}{t^2 + 4t 1}$ [10%] (b) $\int \frac{dt}{3t^2 + 6t + 6}$ [10%]
- 5. Integrate the following by making use of the 't' substitution.

(a)
$$\int \frac{dx}{\sin x + 5\cos x}$$

10%
10%
20%

5%

5%

5%

5%

20%