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E'-" E Differential equations are equations where the unknown fsnation and which involve
derivatives of the unknown function of various orders.

[=]

knan Academy. 1 Differential equations of 1 order

What is a differential
equation?

[=];

1.1 Differential equations with separable variables

1.1.1 Example

E Let us consider the following differential equation:
Khan Academy y = ;
Separable x tan(y)
differential _ _ o _ _
equations. Herey is a function ofz : y(x) andy’ denotes the derivative gfwith respect ta, i.e.

Of0 Vo) = -

This equations can be rewritten in the following way:

[=] |
Y tan(y) = -
Khan Academy. o
Separable or more explicitly:
differential equations y'sin(y) 1
2 cos(y)

Now we remark that

i (eost)) = ysint

1
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which means that:

y'sin(y) _ _% (m(cos(y)))-

cos(y)

Finally we can integrate both sides of the differential émumeas follows:
,
/ y'siny) ;. / L,
cos(y) x

—In(cos(y)) = In(z) + ¢,
wherec is some constant. Now taking the exponential of both sidegyet:

and we get:

which leads to:

here) is a constant (replacing ©).

1.1.2 Example

The following is another example which is solved by the sane¢hiod but using short-hand
notations:

dy
—= = 2xy.
dx Y
Takingy to the left-hand side and theto the right-hand side, we get:
d
Y _ 2xdzx,
Y
and after integration, we get:
In(y) = 2* +c.
Taking the exponential of both sides and denotihfy A, we get
y = e

The separation of variablegs a method that can be applied whenever it is possible ta-refo
mulate the differential equation taking the unknown fumet{and its derivatives) into one
side of the equation and the variabig {nto the other side.

In the following equation, the separation of variables cdare applied.
y' — sin(zy) = 0.
Sometimes the separation of variables is not very obvious e following example.
e =,

where taking thén, we get:
zy = In(z).
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1.2 Linear differential equations

1.2.1 Introduction

Linear differential equations are differential equatievisere the unknown functions and its
derivatives are only multiplied by some coefficients and s&u together.

The order of the differential equations is the order of thghbkst derivative that appears in it.
The following differential equation is a linear differealtiequation of order 3.

y® —sin(z)y” + 5y + In(z)y = €%,
The coefficients of this linear differential equation aréfor y®), —sin(z) (for ¢”), 5 (for
'), andIn(x) (for y).
The right-hand side is equal t6.
The following differential equation is a non linear diffeteal equation of order 2.

T

(y")* + cos(x)y’ — sin(y) = €.

Itis non linear because the second derivative appears wibivar 2 and the O order derivative
appears inside then function.

1.2.2 Homogeneous linear differential equations with cornant coefficients

A homogeneous linear differential equation is a differ@néiquation where the right-hand
side is equal to 0. The two previous examples are non homogsriifferential equations as
the right-hand side was’ in both.

A typical homogeneous first-order linear differential eiu@awith constant coefficients is:
y +ay =0, (1)

wherea € R is a constant. To solve this differential equation, we safgathe variables as
follows:

dy

— = —qQ
d:l;' y?
d

Y —adzx,
Yy

then we integrate both sides:
d
—y:—a/dx—f—c, c € R,
Y

which leads to:
In|y| = —azx+c¢
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Then we take the exponential of both sides and we get:

yl = e

and then
y = Ae AeR

This is the general solution to equatidn (1).

1.2.3 Homogeneous linear differential equations with nonanstant coefficients

A typical homogeneous first-order linear differential eipawith non constant coefficients
is:
y' +a(z)y =0, (2)

The difference between this differential equation andg1hat the coefficient is not a constant
a but a functioru(z).

An example is the following:
y' + cos(x)y =0 (3)

To solve equatiorL{2) we can separate the variables as dofB) fand end with:

d
—y——/a(m)dx—l—c, c e R,
Y

which leads to:

In|y| = —/a(:v)d:lt +c
Then taking the exponential, we get:
Yy = )\e_f“(x)dx, AeR.
This is the general solution to equatidn (2).
The general solution to equatidd (3) is then:

y :)\effcos(x)dz
—\e~ sin(gﬁ)7 \ e R.

1.2.4 Non homogeneous linear differential equations

A typical non homogeneous first-order linear differentiqliation with non constant coeffi-
cients is:

y +a(z)y = b(z), (4)
The differential equation is non homogeneous becauseghemand side i8(z) and not0.
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To solve this differential equation, we use the method oftagation of the constant” where
we take the general solution to the homogeneous equation:

OfH0O y = e~ Jalodz, )\ ER.

—
¥ and replace the constahty a function\(x).
E ™= It follows that the derivative/ of y is given by:
Wikipedie. I\ — [a(z)dx — [a(z)dz
Variation of y A(z)e +a(z)A(z)e ’
parameters.

then we check how can be a solution td{4):
Yy +a(x)y = /\’(as)e_f“(x)dx + a(x))\(a:)e_f“(x)dx + a(x))\e_f“(x)dx
= )\/(m)e—fa(x)d:c
This means thaj is a solution to[(#) if and only if:
N(z)e [ o@de — p(y),

or
N(x) = b(x)el o,

that is equivalent to:

Az) = /b(a:)ef a@de g 4 ¢, ceR.

The general solution t@{4) is then:
Y= (/ b(x)ef “(””)dxdm) e~ Ja@de o o= Jal@)de c€eR.

We see clearly that the solutignis the sum of two functions, the first one is

yr = (/ b(l,)efa(r)dxdm) e—fa(x)d:c)

is a particular solution td {4) also calledparticular integral and the second one

Yy = Ce—fa(z)dr)

is the general solution to the homogeneous equation

y' +a(z)y =0.

E" E An alternative but less general method is to deduce the dghkiver by the structure of the
: equation (often to within an undetermined parameter or.tWwhjs is known as thenethod of
undetermined coefficients thelucky guess method

[=]

Wikipedie
Method of
undetermined
coefficients.
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1.2.5 Example

Let us consider the following differential equation:
y' + 3 cos(x)y = cos(z).

This is a non homogeneous linear differential equation sf éirder with non constant coeffi-
cients.

Following the previous paragraph, the solution is given by:
y = (/ COS(Qf)@gICOS(x)dzd$) 6—3fcos(x)dac + Ce—?)fcos(:z:)dar7 ceR,

= (/ Cos(x)eiisin(x)dx) e—3sin(a:) + ce—BSin(x)
:1 (/ de?»sin(m)) 673sin(x) + CefSSin(:p)

3
— eSSin(x)e_SSin(Jf)+Ce—3sin(x)

+ Ce—3sin(x)
Alternatively one can remark that the constant functjos % is a particular solution to the
differential equation, determine the general solutiontgphtomogeneous equation
y' +3cos(z)y=0
and finally write the general solution to the non homogenemsation as the sum of the

particular solution and the general solution to the homeges equation.

Exam Question Find the general solutions of the differential equatiomgg-yc(#%cy = 1%
(ii) ¥’ — 3/ = sinx + cos . 2003/4

Exam Question Find the general solution of the differential equation

d
% +zy = xy2
The current in a circuit is given by
dl
L— +RI=F
ar

whereL, R andE are constants. Find the general solutionfar terms oft and the particular
solution for which/ = I, att = 0. Show that the terminal value of the currentAgR.
2004/5
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2 The Runge-Kutta method

2.1 Introduction

In many problems, we face complicated differential equetithat we cannot solve analyti-
cally. But sometimes we are just interested in an approxonaif a particular solution on a
fixed interval of finite length.

Itis possible then to have an approximation of the solutsingiappropriate numerical meth-
ods.

One important method is the Runge-Kutta method. It is usedhtbapproximations to solu-
tions of general first-order differential equations of tben:

y/ = f(xay)a (5)

where f is some given function of 2 variables.

2.1.1 Example

The following is an example of differential equations on@& salve numerically with the
Runge-Kutta method:

y' = cos(z?y)e” Y,

In this example the functioff is given by:
a:2+y2

fz,y) = cos(z®y)e

2.2 The Runge-Kutta method

Suppose we are looking for the particular solutipof equation [(b) satisfying(a) = o
wherey, is a given real number. And suppose that we are interestedumerical approxi-
mation of the solution over an intervil, b].

Then, we first divide the intervad, b] is NV subdivisions of equal length = -* whereN is
a given integer. The subdivisions will be the intervialg, x,,.1], 0 < n < N where

h—
Tp=a+hn=a-+ ¢

n.

This means that the first point = a and the last point ., = b.

Then we look for(y, )o<n<n+1 Which are the numerical approximations(9fz,.) )<<y 1
i.e. approximations of the exact solutigrat the point§x,,)o<n<n+1-

The first valuey, is given in the problem.

www.ul.ie/wlee/ma4005.html William Lee
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Suppose that we have an approximatiom,gfthen in order to get an approximation:gf, ;,
we first determiné:, k-, k3, andk, as follows:

kl = hf(xna yn)

k2 - hf(xn + %hyn + %kl)

k3 = hf(xn + %71/71 + %k?)

ko= hf(zn+h,yn+ k)
Then we define\y,, as:

1
Ayn = 6 (]{31 + 2]{72 + 2]{33 + k4) s

and we incremeny,, by Ay,,:
Yn+1 = Yn + Ayn

Since we knowy,, we can apply this method to find an approximatioryof Then using the
same method with; andy,, we get an approximation @, and so on. At the end we get an
approximation ofyy 1.

2.2.1 Example

Consider the following differential equation:
Yy =z+y,

and let us look for an approximation of the particular santsatisfyingy(0) = 1 on the
interval [0, 1] using 2 steps.){ = 2)
In this casef(z,y) = x4+ y, 20 =0, 21 = 0.5, 29 = 1, yo = 1, andh = % =0.5.
In order to find an approximation @f, we first determiné:, k-, k3, andky:

k‘l = hf(l’o,yo) =0.5

ks = hf(zo+ % yo+ 3k1) =0.75

k3= hf(zo+ %, yo+ 3ko) = 0.8125
Then we determinéy,:

1
6
and then:

Y1 = 1Yo + Ayg =1+ 0.796875 = 1.796875

Then we apply determine the new valueskof ks, k3, andk, usingz; = 0.5 andy, =
1.796875 instead ofr, andy,. We find:

k?l = ]’Lf(l’l,y1> = 1.1485

]{72 = hf(.fCl -+ %, Y1 -+ %]4]1) = 1.561

k3= hf(zi+ %y + 1ko) = 1.664

kZ4 = hf(.%‘l + h,y1 + ]fg) = 2.106
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Khan Academy
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polynomial,
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MA4005, Engineering Mathematics 9

which leads to: )
Ayl = 6 (k‘l + 2k2 + 2]€3 + k4) = 11617,

and:
Yo = y1 + Ay = 1.796875 + 1.1617 = 3.141

3 Linear second-order differential equations with constant
coefficients

3.1 Homogeneous linear second-order differential equations with con-
stant coefficients

The general form a such differential equations is
ay” + by +cy =0, (6)

wherea # 0, b, andc are constants.

Whena, b, ¢ are positive this equation describes a damped harmoniltadsci This could be
a massn = a, on a springk = ¢ with dampingu = b, or an LCR circuitL, = a, R = b,
C=c.

If we formally replacey™ (n!" derivative of the functiony) by »™ (r to the powem), we get
the so-called characteristic equation of the differerggation:

ar’* +br +c =0, (7)
which is a polynomial equation of degreeThe discriminant of this equation is given by:

A = b — 4dac.

The solution is given in one the following cases dependingwon

Two real roots A > 0 : then equatiori(7) has 2 distinct real rootsandr_ given by

b+ VA

T+
2a

and the general solution to the differential equatidn (@)iven by:
y = aer+x _’_Ber_x’

wherea and s are arbitrary constants.

www.ul.ie/wlee/ma4005.html William Lee


http://www.khanacademy.org/video/2nd-order-linear-homogeneous-differential-equations-1?playlist=Differential+Equations
http://www.khanacademy.org/video/2nd-order-linear-homogeneous-differential-equations-1?playlist=Differential+Equations
http://mathworld.wolfram.com/DampedSimpleHarmonicMotion.html
http://mathworld.wolfram.com/DampedSimpleHarmonicMotion.html
http://www.khanacademy.org/video/2nd-order-linear-homogeneous-differential-equations-2?playlist=Differential+Equations
http://www.khanacademy.org/video/2nd-order-linear-homogeneous-differential-equations-2?playlist=Differential+Equations

MA4005, Engineering Mathematics 10

Repeated roots A = 0 : then equatiori(7) has one double real root

b
2a’

and the general solution to the differential equatidn (@iven by:

To =

[=].F:4[=] y = (az + ),

Khan Academy

Repeated root.

wherea and/ are arbitrary constants.

Complex conjugate roots A < 0: then equatiori(7) has 2 conjugate complex regtand

r_ =1y given by
_ —bxiV-A

r+ =
2a ’

wherei; = /—1. If we definep = g—j (the real part of-, andr_) andg = g—g (the imaginary
part ofr_, then we can rewrite the solutions [d (7) as

ry+ = p=xiq.
Then the general solution to the differential equatidn ¢&iven by:
y = e (acos(qz) + Fsin(qr))
wherea andg are arbitrary constants.

EE  ERE

[=] %% I'IIEI
Khan Academy Khan Academy
Complex roots. Complex roots
contd.
Yy +y +1=0.
3.1.1 Examples
e Example 1:A >0
y" — 5y +4y = 0.
Khan Academy . . .
y" +5y +6=0, The solutions to the characteristic equation
y(0) =2,9'(0) = 3.

[=] i [=]

r?—5r+4=0

arel and5. The general solution to the differential equation is thiey by:

= ae® 4 Be*°.

www.ul.ie/wlee/ma4005.html William Lee
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e Example2:A =0
y//_2y/+y:0.

The characteristic equation is

P —2r+1=(r—-172=0

Off40

: which has only one double roat The general solution to the differential equation is
then given by:
E y = e"(ax + f).
Khan Academy e Example 3:A <0
y' —y' +3=0, y" — 295y = 0.
y(0) =2, - .
y'(0) =1 The characteristic equation is
P —%r+5=0
The discriminant isA = (—2)? — 4(1)(5) = —16. The roots of the characteristic
equation are:
—(—2) £+/—16
re = (=2) =142
2(1)
The general solution to the differential equation is thexegiby:
Khan Academy . )
v + 4y + 5y =0, y = e (acos(2z) + Bsin(2x)).
y(0) =1,
y'(0) = 0.

3.2 Non-homogeneous linear second-order differential equations with
constant coefficients

In the non-homogeneous case:
ay” +by' +cy = f(z), (8)
wheref is a given function, the general solution if given by:

y =y + ayi + By, 9)

wherey; is a particular solution, also callgxrticular integralof (8), y; andy, are 2 linearly
independent solutions of the homogeneous equati@md are constantsaofy; + Sy- is the
general solution to the homogeneous equation)

Since the solution of the homogeneous equation can be foondthe previous paragraph,
we only need to find a particular solution id (8) in order to fallthe solutions.
Khan Academy

Inhomogeneous Here we present a method for finding a particular solutioromes particular cases.
equations.
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3.2.1 Case of a polynomial right-hand side

In the case where the right-hand side is a polynorfigl:) of degreen,
Po(z) = apz™ + ap_ 12"t ..+ ayx + ao,
we look for a particular integral as a polynomial of the saregrde,
Y1 = " + pna 2"+ T+ po,
which implies that:
Yr =m0+ (0= D122 4 29w+

and
Y =nn— Dppr" 2+ (0 — 1)(n — 2) 12" > + ... + 6z + 2po.

Then we substitute the expressionggfy; andy/ in the differential equation and deduce the
coefficientSug, fi1y,. . fin-

e Example:
Y+ 4y = 2?
The general solution of the homogeneous equation is given by
y = acos(2z) + fsin(2x).
Then we look for a particular integral

Y1 = pax® + pnx + fio.

Since
Yr = 240 + pia,
and
yr = 2fia,
we have
(2p12) + 4(pa® + g + o) = a?,
and then

(4pg — 1)2® + g + 4po + 2 = 0.
It follows that:
4,LL2 —1=0
4,U/1 =0
Ao + 212 =0
Finally we get:
M2 =
231
Ho = —%
The general solution to the integral equation is then giyen b

x2

1
y=7-3 + a cos(2z) + [sin(2x), a,f eR.

[@FNTE
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3.2.2 Case of an exponential right-hand side

Here we study the case where the right-hand side is a proflacpalynomial and an expo-
nential, P, (x)e", P, being a polynomial of degree having the same expression as in the
previous paragraph.

In this case, we look for a particular integral having therfor
yr = Qn(x)e’™,
where(@),, is a polynomial of the same degreefds i.e.

Qn = @™ 4 fna 2™ 4 4 x4 .

Then we determing; andy; and substitute the results in the differential equationrdeoto
find the undetermined coefficients, j1,..., fn-

e Example:
3z

Yy — 4y = xe
The general solution of the homogeneous equation is given by
y = ae 2" + Be*.
Then we look for a particular integral

yr = (luz + Mo)egx-

Since

yr = (B + 1 + 3po)e™,
and

yi = (9pz + 6p1 + Ipg)e™,
we have

(5pax + 641 + Hpuo)e®™ = ze™,
and then It follows that:

Spp =1
6p1 + dpo =0

L
Ho = %

The general solution to the integral equation is then giwen b

Finally we get:

| =

1 6

y = (gx — %) &3 + ae ¥ + Be*”, a, B eR.
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¢ In the case where the right-hand side is a solution to the hemeous differential
equation as in the following example:

y// + 2y — 176233,
this method does not work.
In fact, if we try to get a particular integral
yr = (i + po)e™,

and we replace in the differential equation, we get

4“1621: — .1'6296,

which is impossible. This means that there exists no salutidhe differential equation
having that form.

In such case we need to look for a particular integral havirgform of a product of
a polynomial and an exponential functions, but where theabegf the polynomial is
equal to the degree of the polynomial in the right-hand side p.

This means that in our example, we need to look for a partidatagral having the
expression:
yr = (1aa® + pnx + po)e™,

which implies that:

y! = (4;@:52 + A+ 2p2)w + 4(po + i + 2M2>> e,

then, substituting in the differential equation, we get

(8,ugx +4(pu + 2,u2)) e?® = ge®,
then,

8/J2 =1
4(p1 + 2p2) =0

{MQZ%l
H1= —7

The general solution to the differential equation is then,

and

2
y:(%—z—{—a)e%%—ﬁe_zx, a, B eR.
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3.2.3 Case of a right-hand side withcos and sin functions.

In the case of a right-hand side having the form
P,(x) cos(yz) or P, (x)sin(yz)
whereP, is a polynomial of degree, we look for a particular integral having the form
Qn(x) cos(yr) + R (x) sin(yz),

where@,, and R, are polynomials of degree

Note that in the casevs(vyx) orsin(yz) is a solution to the homogeneous differential equation,
we have to look for a particular integral having the form

Qn+1(z) cos(z) + Ryy1(z) sin(x),

where@),,,; and R, ., are polynomials of degree+ 1.

e Example:
y" — 5y’ + 6y = 100 sin(4x)

The general solution of the homogeneous equation is given by
y = ae®® + e,
Then we look for a particular integral

yr = psin(4z) + v cos(4x).

Since
y; = 4pcos(4x) — 4vsin(4x),
and
y] = —16pusin(4x) — 16v cos(4x),
we have

10(—p + 2v) sin(4x) — 10(2p + v) cos(4x) = 100 sin(4z),

and then It follows that:
10(—p + 2v) = 100
—-102pn+v) =0

p=—2
v=4

The general solution to the integral equation is then giwen b

Finally we get:

y = —2sin(4x) + 4 cos(4x) + ae** + Be*, a, eR.
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y' =3y —4dy =
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3.2.4 Case of a more general right-hand

In the case of a right-hand side having the expression
P, (x)e™ sin(px) + Qn(x)e™™ cos(ux),

where P, and(@,, are polynomials of degree, we look for a particular integral having the
form
yr = Ry(x)e?” sin(ux) + S, (x)e? cos(pz),

whereR,, andS,, are polynomials of degree
3.2.5 Case of aright-hand side as a sum of previous functions

In this case, we look for a particular integral for each fimctn the sum. The particular
integral for the differential equation is then equal to thensof the particular integrals.
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