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Differential equations are equations where the unknown is afunction and which involve
derivatives of the unknown function of various orders.

Khan Academy.
What is a differential
equation?

1 Differential equations of 1st order

1.1 Differential equations with separable variables

Khan Academy
Separable
differential
equations.

Khan Academy.
Separable
differential equations
2.

1.1.1 Example

Let us consider the following differential equation:

y′ =
1

x tan(y)
.

Herey is a function ofx : y(x) andy′ denotes the derivative ofy with respect tox, i.e.

y′(x) =
dy

dx
.

This equations can be rewritten in the following way:

y′ tan(y) =
1

x
,

or more explicitly:
y′ sin(y)

cos(y)
=

1

x
.

Now we remark that
d

dx

(

cos(y)

)

= −y′ sin(y)

1
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which means that:
y′ sin(y)

cos(y)
= − d

dx

(

ln(cos(y))

)

.

Finally we can integrate both sides of the differential equation as follows:
∫

y′ sin(y)

cos(y)
dx =

∫

1

x
dx,

and we get:
− ln(cos(y)) = ln(x) + c,

wherec is some constant. Now taking the exponential of both sides, we get:

1

cos(y)
= ecx,

which leads to:

y = cos−1

(

λ

x

)

,

hereλ is a constant (replacinge−c).

1.1.2 Example

The following is another example which is solved by the same method but using short-hand
notations:

dy

dx
= 2xy.

Takingy to the left-hand side and thex to the right-hand side, we get:

dy

y
= 2xdx,

and after integration, we get:
ln(y) = x2 + c.

Taking the exponential of both sides and denotingec by λ, we get

y = λex
2

.

Theseparation of variablesis a method that can be applied whenever it is possible to refor-
mulate the differential equation taking the unknown function (and its derivatives) into one
side of the equation and the variable (x) into the other side.

In the following equation, the separation of variables cannot be applied.

y′ − sin(xy) = 0.

Sometimes the separation of variables is not very obvious asin the following example.

exy
′

= x,

where taking theln, we get:
xy′ = ln(x).

www.ul.ie/wlee/ma4005.html William Lee
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1.2 Linear differential equations

1.2.1 Introduction

Linear differential equations are differential equationswhere the unknown functions and its
derivatives are only multiplied by some coefficients and summed together.

The order of the differential equations is the order of the highest derivative that appears in it.

The following differential equation is a linear differential equation of order 3.

y(3) − sin(x)y′′ + 5y′ + ln(x)y = ex,

The coefficients of this linear differential equation are1 (for y(3)), − sin(x) (for y′′), 5 (for
y′), andln(x) (for y).

The right-hand side is equal toex.

The following differential equation is a non linear differential equation of order 2.

(y′′)2 + cos(x)y′ − sin(y) = ex.

It is non linear because the second derivative appears with apower 2 and the 0 order derivative
appears inside thesin function.

1.2.2 Homogeneous linear differential equations with constant coefficients

A homogeneous linear differential equation is a differential equation where the right-hand
side is equal to 0. The two previous examples are non homogeneous differential equations as
the right-hand side wasex in both.

A typical homogeneous first-order linear differential equation with constant coefficients is:

y′ + ay = 0, (1)

wherea ∈ R is a constant. To solve this differential equation, we separate the variables as
follows:

dy

dx
= −ay,

dy

y
= −adx,

then we integrate both sides:
∫

dy

y
= −a

∫

dx+ c, c ∈ R,

which leads to:
ln |y| = −ax+ c

www.ul.ie/wlee/ma4005.html William Lee
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Then we take the exponential of both sides and we get:

|y| = ece−ax

and then
y = λe−ax, λ ∈ R.

This is the general solution to equation (1).

1.2.3 Homogeneous linear differential equations with non constant coefficients

Wikipedia
Linear differential
equations: First
order equation.

A typical homogeneous first-order linear differential equation with non constant coefficients
is:

y′ + a(x)y = 0, (2)

The difference between this differential equation and (1) is that the coefficient is not a constant
a but a functiona(x).

An example is the following:
y′ + cos(x)y = 0 (3)

To solve equation (2) we can separate the variables as done for (1) and end with:
∫

dy

y
= −

∫

a(x)dx+ c, c ∈ R,

which leads to:

ln |y| = −
∫

a(x)dx+ c

Then taking the exponential, we get:

y = λe−
∫
a(x)dx, λ ∈ R.

This is the general solution to equation (2).

The general solution to equation (3) is then:

y =λe−
∫
cos(x)dx

=λe− sin(x), λ ∈ R.

1.2.4 Non homogeneous linear differential equations

A typical non homogeneous first-order linear differential equation with non constant coeffi-
cients is:

y′ + a(x)y = b(x), (4)

The differential equation is non homogeneous because the right-hand side isb(x) and not0.

www.ul.ie/wlee/ma4005.html William Lee
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To solve this differential equation, we use the method of the“variation of the constant” where
we take the general solution to the homogeneous equation:

y = λe−
∫
a(x)dx, λ ∈ R.

and replace the constantλ by a functionλ(x).

Wikipedia
Variation of
parameters.

It follows that the derivativey′ of y is given by:

y′ = λ′(x)e−
∫
a(x)dx + a(x)λ(x)e−

∫
a(x)dx,

then we check howy can be a solution to (4):

y′ + a(x)y = λ′(x)e−
∫
a(x)dx + a(x)λ(x)e−

∫
a(x)dx + a(x)λe−

∫
a(x)dx

= λ′(x)e−
∫
a(x)dx

This means thaty is a solution to (4) if and only if:

λ′(x)e−
∫
a(x)dx = b(x),

or
λ′(x) = b(x)e

∫
a(x)dx,

that is equivalent to:

λ(x) =

∫

b(x)e
∫
a(x)dxdx+ c, c ∈ R.

The general solution to (4) is then:

y =

(
∫

b(x)e
∫
a(x)dxdx

)

e−
∫
a(x)dx + ce−

∫
a(x)dx, c ∈ R.

We see clearly that the solutiony is the sum of two functions, the first one is

yI =

(
∫

b(x)e
∫
a(x)dxdx

)

e−
∫
a(x)dx,

is a particular solution to (4) also calleda particular integral, and the second one

yg = ce−
∫
a(x)dx,

is the general solution to the homogeneous equation

y′ + a(x)y = 0.

An alternative but less general method is to deduce the rightanswer by the structure of the
equation (often to within an undetermined parameter or two). This is known as themethod of
undetermined coefficientsor thelucky guess method.

Wikipedia
Method of
undetermined
coefficients.

www.ul.ie/wlee/ma4005.html William Lee
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1.2.5 Example

Let us consider the following differential equation:

y′ + 3 cos(x)y = cos(x).

This is a non homogeneous linear differential equation of first order with non constant coeffi-
cients.

Wolfram Alpha
Example solved. If
using qrcode type:
dy/dx=3*cos(x)*y=cos(x)

QR code generator
mangles input:
sorry!

Following the previous paragraph, the solution is given by:

y =

(
∫

cos(x)e3
∫
cos(x)dxdx

)

e−3
∫
cos(x)dx + ce−3

∫
cos(x)dx, c ∈ R,

=

(
∫

cos(x)e3 sin(x)dx

)

e−3 sin(x) + ce−3 sin(x)

=
1

3

(
∫

de3 sin(x)
)

e−3 sin(x) + ce−3 sin(x)

=
1

3
e3 sin(x)e−3 sin(x) + ce−3 sin(x)

=
1

3
+ ce−3 sin(x)

Alternatively one can remark that the constant functiony = 1
3

is a particular solution to the
differential equation, determine the general solution go the homogeneous equation

y′ + 3 cos(x)y = 0

and finally write the general solution to the non homogeneousequation as the sum of the
particular solution and the general solution to the homogeneous equation.

Exam Question Find the general solutions of the differential equations (i) dy

dx
+2xy = e1−x2

;
(ii) y′′ − y′ = sin x+ cos x. 2003/4.

Exam Question Find the general solution of the differential equation

dy

dx
+ xy = xy2

The current in a circuit is given by

L
dI

dt
+RI = E

whereL,R andE are constants. Find the general solution forI in terms oft and the particular
solution for whichI = I0 at t = 0. Show that the terminal value of the current isE/R.
2004/5.

www.ul.ie/wlee/ma4005.html William Lee
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2 The Runge-Kutta method

2.1 Introduction

In many problems, we face complicated differential equations that we cannot solve analyti-
cally. But sometimes we are just interested in an approximation of a particular solution on a
fixed interval of finite length.

It is possible then to have an approximation of the solution using appropriate numerical meth-
ods.

One important method is the Runge-Kutta method. It is used to find approximations to solu-
tions of general first-order differential equations of the form:

y′ = f(x, y), (5)

wheref is some given function of 2 variables.

2.1.1 Example

The following is an example of differential equations one can solve numerically with the
Runge-Kutta method:

y′ = cos(x2y)ex
2+y2 .

In this example the functionf is given by:

f(x, y) = cos(x2y)ex
2+y2 .

2.2 The Runge-Kutta method

Suppose we are looking for the particular solutiony of equation (5) satisfyingy(a) = y0
wherey0 is a given real number. And suppose that we are interested in anumerical approxi-
mation of the solution over an interval[a, b].

Then, we first divide the interval[a, b] is N subdivisions of equal lengthh = b−a
N

whereN is
a given integer. The subdivisions will be the intervals[xn, xn+1], 0 ≤ n ≤ N where

xn = a+ hn = a+
b− a

N
n.

This means that the first pointx0 = a and the last pointxN+1 = b.

Then we look for(yn)0≤n≤N+1 which are the numerical approximations of(y(xn))0≤n≤N+1,
i.e. approximations of the exact solutiony at the points(xn)0≤n≤N+1.

The first valuey0 is given in the problem.

www.ul.ie/wlee/ma4005.html William Lee
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Suppose that we have an approximation ofyn, then in order to get an approximation ofyn+1,
we first determinek1, k2, k3, andk4 as follows:

k1 = hf(xn, yn)

k2 = hf(xn +
h
2
, yn +

1
2
k1)

k3 = hf(xn +
h
2
, yn +

1
2
k2)

k4 = hf(xn + h, yn + k3)

Then we define∆yn as:

∆yn =
1

6
(k1 + 2k2 + 2k3 + k4) ,

and we incrementyn by∆yn:
yn+1 = yn +∆yn.

Since we knowy0, we can apply this method to find an approximation ofy1. Then using the
same method withx1 andy1, we get an approximation ofy2, and so on. At the end we get an
approximation ofyN+1.

2.2.1 Example

Consider the following differential equation:

y′ = x+ y,

and let us look for an approximation of the particular solution satisfyingy(0) = 1 on the
interval [0, 1] using 2 steps. (N = 2)

In this casef(x, y) = x+ y, x0 = 0, x1 = 0.5, x2 = 1, y0 = 1, andh = 1−0
2

= 0.5.

In order to find an approximation ofy1, we first determinek1, k2, k3, andk4:

k1 = hf(x0, y0) = 0.5

k2 = hf(x0 +
h
2
, y0 +

1
2
k1) = 0.75

k3 = hf(x0 +
h
2
, y0 +

1
2
k2) = 0.8125

k4 = hf(x0 + h, y0 + k3) = 0.15625

Then we determine∆y0:

∆y0 =
1

6
(k1 + 2k2 + 2k3 + k4) = 0.796875,

and then :
y1 = y0 +∆y0 = 1 + 0.796875 = 1.796875

Then we apply determine the new values ofk1, k2, k3, andk4 usingx1 = 0.5 and y1 =
1.796875 instead ofx0 andy0. We find:

k1 = hf(x1, y1) = 1.1485

k2 = hf(x1 +
h
2
, y1 +

1
2
k1) = 1.561

k3 = hf(x1 +
h
2
, y1 +

1
2
k2) = 1.664

k4 = hf(x1 + h, y1 + k3) = 2.106

www.ul.ie/wlee/ma4005.html William Lee
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which leads to:

∆y1 =
1

6
(k1 + 2k2 + 2k3 + k4) = 1.1617,

and:
y2 = y1 +∆y1 = 1.796875 + 1.1617 = 3.141

3 Linear second-order differential equations with constant
coefficients

3.1 Homogeneous linear second-order differential equations with con-
stant coefficients

The general form a such differential equations is

ay′′ + by′ + cy = 0, (6)

wherea 6= 0, b, andc are constants.

Khan Academy
Second order
homogeneous linear
equations 1.

Whena, b, c are positive this equation describes a damped harmonic oscillator. This could be
a massm = a, on a springk = c with dampingµ = b, or an LCR circuitL = a, R = b,
C = c−1.

Wolfram Mathworld
Damped simple
harmonic motion.

If we formally replacey(n)(nth derivative of the functiony) by rn (r to the powern), we get
the so-called characteristic equation of the differentialequation:

ar2 + br + c = 0, (7)

which is a polynomial equation of degree2. The discriminant of this equation is given by:

∆ = b2 − 4ac.

Khan Academy
Characteristic
polynomial,
y
′′ + 5y′ + 6 = 0.

The solution is given in one the following cases depending on∆:

Two real roots ∆ > 0 : then equation (7) has 2 distinct real rootsr+ andr− given by

r± =
−b±

√
∆

2a
,

and the general solution to the differential equation (6) isgiven by:

y = αer+x + βer−x,

whereα andβ are arbitrary constants.

www.ul.ie/wlee/ma4005.html William Lee
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Repeated roots ∆ = 0 : then equation (7) has one double real root

r0 = − b

2a
,

and the general solution to the differential equation (6) isgiven by:

y = er0x(αx+ β),

whereα andβ are arbitrary constants.

Khan Academy
Repeated root.

Complex conjugate roots ∆ < 0: then equation (7) has 2 conjugate complex rootsr+ and
r− = r̄+ given by

r± =
−b± i

√
−∆

2a
,

wherei =
√
−1. If we definep = −b

2a
(the real part ofr+ andr−) andq =

√
∆

2a
(the imaginary

part ofr+, then we can rewrite the solutions to (7) as

r± = p± iq.

Then the general solution to the differential equation (6) is given by:

y = epx (α cos(qx) + β sin(qx)) ,

whereα andβ are arbitrary constants.

Khan Academy
Complex roots.

Khan Academy
Complex roots
contd.
y′′ + y′ + 1 = 0.

3.1.1 Examples

Khan Academy
y
′′ + 5y′ + 6 = 0,

y(0) = 2, y′(0) = 3.

Khan Academy
4y′′ − 9y′ + 3y = 0,
y(0) = 2, y′(0) = 1

2
.

• Example 1 :∆ > 0
y′′ − 5y′ + 4y = 0.

The solutions to the characteristic equation

r2 − 5r + 4 = 0

are1 and5. The general solution to the differential equation is then given by:

y = αex + βe5x.

www.ul.ie/wlee/ma4005.html William Lee
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Khan Academy
y
′′ − y

′ + 1

4
= 0,

y(0) = 2,
y
′(0) = 1

3

Khan Academy
y
′′ + 4y′ + 5y = 0,

y(0) = 1,
y
′(0) = 0.

• Example 2 :∆ = 0
y′′ − 2y′ + y = 0.

The characteristic equation is

r2 − 2r + 1 = (r − 1)2 = 0

which has only one double root1. The general solution to the differential equation is
then given by:

y = ex(αx+ β).

• Example 3 :∆ < 0
y′′ − 2y′5y = 0.

The characteristic equation is
r2 − 2r + 5 = 0

The discriminant is∆ = (−2)2 − 4(1)(5) = −16. The roots of the characteristic
equation are:

r± =
−(−2)±

√
−16

2(1)
= 1± 2i

The general solution to the differential equation is then given by:

y = ex(α cos(2x) + β sin(2x)).

3.2 Non-homogeneous linear second-order differential equations with
constant coefficients

In the non-homogeneous case:

ay′′ + by′ + cy = f(x), (8)

wheref is a given function, the general solution if given by:

y = yI + αy1 + βy2, (9)

whereyI is a particular solution, also calledparticular integralof (8), y1 andy2 are 2 linearly
independent solutions of the homogeneous equation,α andβ are constants. (αy1 + βy2 is the
general solution to the homogeneous equation)

Khan Academy
Inhomogeneous
equations.

Since the solution of the homogeneous equation can be found from the previous paragraph,
we only need to find a particular solution to (8) in order to findall the solutions.

Here we present a method for finding a particular solution in some particular cases.

www.ul.ie/wlee/ma4005.html William Lee
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3.2.1 Case of a polynomial right-hand side

In the case where the right-hand side is a polynomialPn(x) of degreen,

Pn(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0,

we look for a particular integral as a polynomial of the same degree,

yI = µnx
n + µn−1x

n−1 + . . .+ µ1x+ µ0,

which implies that:

y′I = nµnx
n−1 + (n− 1)µn−1x

n−2 + . . .+ 2µ2x+ µ1,

and
y′′I = n(n− 1)µnx

n−2 + (n− 1)(n− 2)µn−1x
n−3 + . . .+ 6µ3x+ 2µ2.

Then we substitute the expressions ofyI , y′I andy′′I in the differential equation and deduce the
coefficientsµ0, µ1,...,µn.

Khan Academy
y
′′−3y′−4y = 4x2.

• Example:
y′′ + 4y = x2

The general solution of the homogeneous equation is given by:

y = α cos(2x) + β sin(2x).

Then we look for a particular integral

yI = µ2x
2 + µ1x+ µ0.

Since
y′I = 2µ2x+ µ1,

and
y′′I = 2µ2,

we have
(2µ2) + 4(µ2x

2 + µ1x+ µ0) = x2,

and then
(4µ2 − 1)x2 + 4µ1x+ 4µ0 + 2µ2 = 0.

It follows that:






4µ2 − 1 = 0
4µ1 = 0
4µ0 + 2µ2 = 0

Finally we get:






µ2 =
1
4

µ1 = 0
µ0 = −1

8

The general solution to the integral equation is then given by:

y =
x2

4
− 1

8
+ α cos(2x) + β sin(2x), α, β ∈ R.

www.ul.ie/wlee/ma4005.html William Lee
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3.2.2 Case of an exponential right-hand side

Here we study the case where the right-hand side is a product of a polynomial and an expo-
nential,Pn(x)e

γx, Pn being a polynomial of degreen having the same expression as in the
previous paragraph.

In this case, we look for a particular integral having the form:

yI = Qn(x)e
γx,

whereQn is a polynomial of the same degree asPn, i.e.

Qn = µnx
n + µn−1x

n−1 + . . .+ µ1x+ µ0.

Then we determiney′I andy′′I and substitute the results in the differential equation in order to
find the undetermined coefficientsµ0, µ1,...,µn.

• Example:
y′′ − 4y = xe3x

The general solution of the homogeneous equation is given by:

y = αe−2x + βe2x.

Then we look for a particular integral

yI = (µ1x+ µ0)e
3x.

Since
y′I = (3µ1x+ µ1 + 3µ0)e

3x,

and
y′′I = (9µ1x+ 6µ1 + 9µ0)e

3x,

we have
(5µ1x+ 6µ1 + 5µ0)e

3X = xe3x,

and then It follows that:
{

5µ1 = 1
6µ1 + 5µ0 = 0

Finally we get:
{

µ1 =
1
5

µ0 = − 6
25

The general solution to the integral equation is then given by:

y =

(

1

5
x− 6

25

)

e3x + αe−2x + βe2x, α, β ∈ R.

www.ul.ie/wlee/ma4005.html William Lee
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• In the case where the right-hand side is a solution to the homogeneous differential
equation as in the following example:

y′′ + 2y = xe2x,

this method does not work.

In fact, if we try to get a particular integral

yI = (µ1x+ µ0)e
2x,

and we replace in the differential equation, we get

4µ1e
2x = xe2x,

which is impossible. This means that there exists no solution to the differential equation
having that form.

In such case we need to look for a particular integral having the form of a product of
a polynomial and an exponential functions, but where the degree of the polynomial is
equal to the degree of the polynomial in the right-hand side plus 1.

This means that in our example, we need to look for a particular integral having the
expression:

yI = (µ2x
2 + µ1x+ µ0)e

2x,

which implies that:

y′′I =

(

4µ2x
2 + 4(µ1 + 2µ2)x+ 4(µ0 + µ1 + 2µ2)

)

e2x,

then, substituting in the differential equation, we get
(

8µ2x+ 4(µ1 + 2µ2)

)

e2x = xe2x,

then,
{

8µ2 = 1
4(µ1 + 2µ2) = 0

and
{

µ2 =
1
8

µ1 = −1
4

The general solution to the differential equation is then,

y =

(

x2

8
− x

4
+ α

)

e2x + βe−2x, α, β ∈ R.

www.ul.ie/wlee/ma4005.html William Lee
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3.2.3 Case of a right-hand side withcos and sin functions.

In the case of a right-hand side having the form

Pn(x) cos(γx) or Pn(x) sin(γx)

wherePn is a polynomial of degreen, we look for a particular integral having the form

Qn(x) cos(γx) +Rn(x) sin(γx),

whereQn andRn are polynomials of degreen.

Khan Academy
y
′′ − 3y′ − 4y =

2 sinx

Note that in the casecos(γx) or sin(γx) is a solution to the homogeneous differential equation,
we have to look for a particular integral having the form

Qn+1(x) cos(x) +Rn+1(x) sin(x),

whereQn+1 andRn+1 are polynomials of degreen+ 1.

• Example:
y′′ − 5y′ + 6y = 100 sin(4x)

The general solution of the homogeneous equation is given by:

y = αe2x + βe3x.

Then we look for a particular integral

yI = µ sin(4x) + ν cos(4x).

Since
y′I = 4µ cos(4x)− 4ν sin(4x),

and
y′′I = −16µ sin(4x)− 16ν cos(4x),

we have
10(−µ+ 2ν) sin(4x)− 10(2µ+ ν) cos(4x) = 100 sin(4x),

and then It follows that:
{

10(−µ+ 2ν) = 100
−10(2µ+ ν) = 0

Finally we get:
{

µ = −2
ν = 4

The general solution to the integral equation is then given by:

y = −2 sin(4x) + 4 cos(4x) + αe2x + βe3x, α, β ∈ R.

www.ul.ie/wlee/ma4005.html William Lee

http://www.khanacademy.org/video/undetermined-coefficients-2?playlist=Differential+Equations
http://www.khanacademy.org/video/undetermined-coefficients-2?playlist=Differential+Equations
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3.2.4 Case of a more general right-hand

In the case of a right-hand side having the expression

Pn(x)e
γx sin(µx) +Qn(x)e

γx cos(µx),

wherePn andQn are polynomials of degreen, we look for a particular integral having the
form

yI = Rn(x)e
γx sin(µx) + Sn(x)e

γx cos(µx),

whereRn andSn are polynomials of degreen.

3.2.5 Case of a right-hand side as a sum of previous functions

In this case, we look for a particular integral for each function in the sum. The particular
integral for the differential equation is then equal to the sum of the particular integrals.

Khan Academy
y
′′ − 3y′ − 4y =

3e2x +2 sinx+4x2.

www.ul.ie/wlee/ma4005.html William Lee

http://www.khanacademy.org/video/undetermined-coefficients-4?playlist=Differential+Equations
http://www.khanacademy.org/video/undetermined-coefficients-4?playlist=Differential+Equations
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