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1 The indefinite integral

1.1 Definition

Let f be a function defined from R into R. Then we can define the function
g as the derivative of f :

g(x) = f ′(x), ∀x ∈ R.

This defines a transform which to any function associates another function
as its derivative.

The inverse transform would associate to a function f a function F such
that the derivative of the latter function is f , i.e.

F ′(x) = f(x), ∀x ∈ R.

This transform is called the anti derivative transform and F is called the anti
derivative of f and is usually denoted by:

F =

∫

f(x) dx.

1.2 Examples

F (x) =
∫

xn dx:
The function F has to satisfy F ′(x) = xn. If we differentiate axm, we get
amxm−1. Then, to get the answer, one has to find a and m such that m−1 =
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n and am = 1. Then, m = n + 1 and a(n + 1) = 1. Here we have to face 2
cases: if n 6= −1, then a = 1

n+1
and F (x) = 1

n+1
xn+1 is a solution. If n = −1,

then we cannot find a such that a(n+1) = 1 because n+1 = 0. In that case
the solution is given by the ln function:

∫

1

x
dx = ln(x),

because d ln(x)
dx

= 1
x
.

We can remark that if F is an anti-derivative of f , then for any constant
c ∈ R, F + c is an anti-derivative of f . In fact, if dF (x)

dx
= f(x), then

dF (x)+c

dx
= f(x). The anti-derivative, or indefinite integral, is defined up to

an additive constant. Therefore, we can write:

d ln(x)

dx
=

1

x
+ c, c ∈ R.

∫

sin(x) dx.

Since d(− cos(x))
dx

= sin(x), we have:
∫

sin(x) dx = −cos(x) + c, c ∈ R.

∫

exdx:
Since dex

dx
= ex, we have:

∫

exdx = ex + c, c ∈ R.

∫

eaxdx:

From dαeβx

dx
= αβeβx, we deduce that in order to get eax on the right-hand

side, we have to satisfy αβ = 1 and β = a, i.e. α = 1
a
. Then we have:

∫

eaxdx =
1

a
eax + c, c ∈ R.

∫

cos(ax)dx:
From the previous examples, we can deduce that:

∫

cos(ax)dx =
sin(ax)

a
+ c, c ∈ R.

In general, all indefinite integrals of elementary functions can be treated
in a similar way and can be found in the tables.
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1.3 Properties

The indefinite integral is a linear transform, which means that for any func-
tions f and g and any real constant α, the following properties hold:

(i)
∫

αf(x)dx = α

∫

f(x)dx.

(ii)
∫

(

f(x) + g(x)
)

dx =

∫

f(x)dx +

∫

g(x)dx.

This property is very useful, since it allows us to determine easily indefi-
nite integrals of linear combinations of elementary functions.

∫ (

3x5 − 7x2 + e2x − 3

x

)

dx =3

∫

x5dx − 7

∫

x2dx +

∫

e2xdx − 3

∫

1

x
dx

=
3

6
x6 − 7

3
x3 +

1

2
e2x − 3 ln(x)

Remark 1. The above properties apply only for linear combinations of func-
tions (sums and multiplication by constants). In any case the following inte-
gral:

∫

ex sin(x)dx

can be transformed into

ex

∫

sin(x)dx, or

∫

exdx

∫

sin(x)dx.

This is COMPLETELY FALSE!!

2 Usual methods of integration

2.1 Integration by substitution

Many integrals can be solved using an appropriate substitution. There is no
universal rule to determine whether we should use a substitution and which
substitution should be used.

We can see how the substitution method works with the following exam-
ples:

3



(i)

I =

∫

dx√
a2 − x2

,

where a is some real constant.

Here we introduce the variable u as:

x = a sin(u).

Then
dx

du
= a cos(u),

and
dx = a cos(u)du.

We also have:

√
a2 − x2 =

√

a2 − a2 sin(u)

=
√

a2 cos2(u)

=|a cos(u)|.

If, in addition, we suppose that a > 0, we can prove that cos(u) > 0,
and then: √

a2 − x2 = a cos(u).

Finally, we get:

I =

∫

a cos(u)du

a cos(u)

=

∫

du

= u

= sin−1
(x

a

)

+ c

(ii)

I =

∫

dx√
2 + 3x

.

Here we introduce the variable u as:

u = 2 + 3x.
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Then:
du = 3dx,

or

dx =
1

3
du.

So,

I =

∫ 1
3
du√
u

=
1

3

∫

u− 1

2 du + c

=
1

3

u
1

2

1
2

+ c

=
2

3

√
2 + 3x + c.

(iii)

I =

∫

cos(θ)

sin3(θ)
dθ.

Here we introduce the variable u as u = sin(θ), then we have:

du = cos(theta)dθ,

and

I =

∫

du

u3

=
1

−2
u−2 + c

= − 1

2 sin2(θ)
+ c.

A shortened version of this is:

I =

∫

d
(

sin(θ)
)

sin3(θ)

=

∫

sin−3(θ)d
(

sin(θ)
)

=
1

−2
sin−2(θ) + c

= − 1

2 sin2(θ)
.
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2.2 Standard integrals

Integrals of standard functions can be found on tables, but in many cases,
one has to transform the integral into a standard form before applying the
table results.

A standard result is the following:

∫

dx

x2 + a2
=

1

a
tan−1

(x

a

)

.

The following example shows how we transform the integral I =
∫

dx
5x2+7

into a standard form in order to apply the previous result.

I =

∫

dx

5x2 + 7

=
1

5

∫

1

x2 + 7
5

=
1

5

∫

1

x2 +
(√

7
5

)2

=
1

5

1
√

7
5

tan−1





x
√

7
5





=
1√
35

tan−1

(

√

5

7
x

)

2.3 Trigonometric fractions

In the case of integrals of polynomials and fractions of trigonometric functions
of the variable x, the substitution by

t = tan
(x

2

)

can sometimes give the solution.
With this substitution, we have:

tan(x) =
2 tan

(

x
2

)

1 − tan2
(

x
2

) =
2t

1 − t2
,

sin(x) =
2t

1 + t2
,
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cos(x) =
1 − t2

1 + t2
,

and
dt

dx
=

1

2

(

1 + tan2 x

2

)

,

which means that

dx =
2dt

1 + t2
.

We can use this method to solve I =
∫

dx
1+2 cos(x)

. If we define t as

t = tan
x

2
,

then, using the previous formulas, we get

I =

∫

2dt

(1 + t2)
(

1 + 21−t2

1+t2

)

=

∫

2dt

3 − t2

=2

∫

dt

(
√

3)2 − t2
this is in standard form, see table

=2
1√
3

tanh−1

(

t√
3

)

+ c

=
2√
3

tanh−1

(

1√
3

tan
x

2

)

+ c

Alternatively, we can write:

2

(
√

3)2 − t2
=

2

(
√

3 − t)(
√

3 − t)

=

1√
3√

3 − t
+

1√
3√

3 + t
.

Then,

I =

∫ 1√
3√

3 − t
dt +

∫ 1√
3√

3 + t
dt

= − 1√
3

ln(
√

3 − t) +
1√
3

ln(
√

3 + t)

=
1√
3

ln

(√
3 + t√
3 − t

)
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2.4 Completing the square

This method consists in completing ax2 + bx by the right constant in order
to obtain the square formula

a

(

x +
b

2a

)2

.

Suppose we have to solve the following integral:

I =

∫

dx

2x2 + 2x + 3
,

then

I =
1

2

∫

dx

x2 + x + 3
2

=
1

2

∫

dx
(

x + 1
2

)2 − 1
4

+ 3
4

=
1

2

∫

dx
(

x + 1
2

)2
+ 5

4

Now, if we introduce u by u = x + 1
2
, then

I =
1

2

∫

du

u2 +
(√

5
2

)2 this is a standard form

=
1

2

1
√

5
2

tan−1 u
√

5
2

=
1√
5

tan−1 2x + 1√
5

2.5 Integration by parts

If u and v are two functions, then the derivative of the product uv is given
by the following formula:

(uv)′ = u′v + uv′.

Now, we integrate this identity, because of the linearity of the integral, we
get:

∫

(uv)′dx =

∫

u′vdx +

∫

uv′dx.
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Suppose now that we have to solve the integral of a particular function
f that can be written as a product of a function u and the derivative of a
function v, i.e.

f = uv′.

Then, we can easily deduce from the previous formula that:

∫

fdx =

∫

uv′dx

=

∫

(uv)′dx −
∫

u′vdx

=uv −
∫

u′vdx

This formula can be summarized as follows:
∫

udv = uv −
∫

vdu.

Example 1

To solve

I =

∫

x cos xdx,

we define u = x and cos xdx = dv. Then, we have du = dx and v =
∫

cos xdx = sin x. Now if we substitute these values in the previous formula,
we get:

I =x sin x −
∫

sin xdx

=x sin x + cos x

Example 2

Sometimes, we need integrate by parts the new integral as in the following
example:

J =

∫

x2 sin xdx
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Define u = x2 and sin xdx = dv. Then, we have du = 2xdx and v =
∫

sin xdx = − cos x. Then:

J = − x2 cos x −
∫

2x(− cos x)dx

= − x2 cos x + 2

∫

x cos xdx

= − x2 cos x + 2I

= − x2 cos x + 2(x sin x + cos x)

=(−x2 + 2) cos x + 2x sin x

After the first integration by parts, we arrived to the result J = x2 cos x+
2
∫

x cos xdx, then we needed to do another integration by parts to solve
∫

x cos xdx (which has been done in the previous example).

Example 3

In other cases, integration by parts leads back to the original integral. This
can allow to solve the integral by solving a simple algebraic equation.

K =

∫

ex sin xdx.

Define u = ex and dv = sin xdx. It follows that du = exdx and v = − cos x.
Then:

K = − ex cos x −
∫

(− cos x)exdx

= − ex cos x +

∫

cos xexdx.

Now define again u = ex and dv = cos xdx. It follows that du = exdx and
v = sin x. Then:

∫

cos xexdx =ex sin x −
∫

ex sin xdx

=ex sin x − K

Now substituting this in the previous equations we get the following algebraic
equation:

K = −ex cos x + ex sin x − K,

or equivalently
2K = −ex cos x + ex sin x,

which means that:

K =
1

2
ex(sin x − cos x).

10



3 The definite integral

3.1 Definition

Definition 1. Let a, b ∈ R such that a ≤ b and let f be an integrable function
over [a, b]. Suppose that F =

∫

f(x)dx, i.e. dF (x)
dx

= f(x).

The definite integral of f between a and b is denoted by
∫ b

a
f(x)dx and is

given by:
∫ b

a

f(x)dx = [F (x)]ba = F (b) − F (a).

In the following example we compute the integral of f(x) = x2 + 3x − 5
between −1 and 4.

∫ 4

−1

f(x)dx =

∫ 4

−1

(x2 + 3x − 5)dx

=

[

1

3
x3 +

3

2
x2 − 5x

]4

−1

=

(

1

3
(4)3 +

3

2
(4)2 − 5(4)

)

−
(

1

3
(−1)3 +

3

2
(−1)2 − 5(−1)

)

=
115

6

3.2 Properties

(i) Suppose that for any x ∈ [a, b], f(x) ≥ 0, then:

∫ b

a

f(x)dx ≥ 0.

(ii) For any a, b ∈ R, we have:

∫ a

b

f(x)dx = −
∫ b

a

f(x)dx.

(iii) for any a, b, c ∈ R, we have:

∫ c

a

f(x)dx =

∫ b

a

f(x)dx +

∫ c

b

f(x)dx.
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Figure 1: Integration of a piecewise constant function.

3.3 Interpretation

Suppose we have to integrate a piecewise constant function between a and b

as shown on Figure 1.
Since:

f(x) =







y1 ∀x ∈ (a, x1)
y2 ∀x ∈ (x1, x2)
y3 ∀x ∈ (x2, x3)

we can deduce from property (iii) that:

∫ b

a

f(x)dx =

∫ x1

a

f(x)dx +

∫ x2

x1

f(x)dx +

∫ x3

x2

f(x)dx

=

∫ x1

a

y1dx +

∫ x2

x1

y2dx +

∫ x3

x2

y3dx

=y1(x1 − a) + y2(x2 − x1) + y3(b − x2)

We see clearly that in the case of a piecewise constant function f , the
integral

∫ b

a
f(x)dx corresponds to the area of the surface located between the

curve of f , the x axis and the vertical lines passing at a and b.
Now suppose we want to determine the area of the surface located between

the curve of f , the x axis and the vertical lines passing at a and b for a more
general positive function on [a, b].

If we divide the interval [a, b] into 10 subintervals [xn, xn+1], 0 ≤ n ≤ 9,
of equal lengths b−a

10
, where x0 = a and x10 = b, we can approximate the area
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of the surface by the area of the rectangles of sides [xn, xn+1] and [0, f(xn)]
as shown on Figure 2.

This approximation can be improved if we divide [a, b] into N > 10 in-
tervals of length b−a

N
. The higher is N , the better the approximation will

be.
If N increases indefinitely, we will converge to the area of the original

surface which can be interpreted as the sum of areas of an infinity of rect-
angles of infinitesimal (infinitely small) width and of height f(x), having an
infinitesimal surface f(x)dx.

The integral
∫ b

a
f(x)dx corresponds then to the area of the surface located

between the curve of f , the x axis and the vertical lines passing at a and b.
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Figure 2: Integration of a more general positive function.

Suppose now that the function f satisfies the following condition:

{

f(x) ≤ 0 ∀x ∈ (a, c)
f(x) ≥ 0 ∀x ∈ (c, b)

as shown on Figure 3.
Then using property (iii), we have:

∫ b

a

f(x)dx =

∫ c

a

f(x)dx +

∫ b

c

f(x)dx

= −
∫ c

a

−f(x)dx +

∫ b

c

f(x)dx

13



Since the curve of −f is the symmetric of the one of f about the x axis,
∫ c

a
−f(x)dx is equal to the area of the surface located between the curve of f ,

the x axis and the vertical lines passing at a and c. (because −f is positive)
We can now generalize the interpretation of the integral to general func-

tions as follows :
∫ b

a
f(x)dx corresponds to the algebraic area of the surface

located between the curve of f , the x axis and the vertical lines passing
at a and b. The adjective algebraic means that the surface will be counted
positively if the function is positive and negatively if the function is negative.
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Figure 3: Integration of a general function.

3.4 Applications

3.4.1 Find the area between two curves

Let A be the area of the surface between the curves of two functions f and
g for x ∈ [a, b], then:

A =

∫ b

a

|f(x) − g(x)|dx.
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In fact, we can see in the example of Figure 4 that:

A =A1 + A2

=

∫ c

a

(f(x) − g(x))dx +

∫ b

c

(g(x) − f(x))dx

=

∫ c

a

|f(x) − g(x)|dx +

∫ b

c

|g(x) − f(x)|dx

=

∫ b

a

|f(x) − g(x)|dx
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Figure 4: Area between 2 curves.

3.4.2 Volumes of revolution

Suppose we want to determine the volume delimited by the surface obtained
when rotating the curve of a function f about the x axis for x ∈ [a, b]. Then
we can divide this volume into infinitesimal cylinders around (x, 0) of radius
f(x) and height dx.

The volume V is then obtained by summing the infinitesimal volumes
dv = πf(x)2dx:

V =

∫ b

a

πf(x)2dx.

This is shown diagrammatically on Figure 5.
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Figure 5: Volume of revolution.

Example: to find the volume to a cone of height h and radius R, we can
consider it as the product of the revolution of the curve y = f(x) = R

h
x about

the x axis, the basis being at x = h. Then following the previous formula,
we have:

V =

∫ h

0

πf(x)2dx

=

∫ h

0

π

(

R

h
x

)2

dx

=π
R2

h2

[

x3

3

]h

0

=
πR2h

3

3.4.3 Length of a curve

Consider a function f and suppose we have to determine the length of the
curve of f between x = a and x = b. We can approach this curve by N

straight lines [P0, P1], [P1, P2],. . . , [PN , PN+1] as shown on figure 6.
Suppose that the points (xj)0≤j≤N+1 are equidistant, i.e. xj+1 − xj =

b−a
N

= ∆x. Then, since the point Pj has coordinates (xj, f(xj)), the length
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δlj of [Pj, Pj+1] is given by:

δl2j =(xj+1 − xj)
2 + (f(xj+1) − f(xj))

2

=(∆x)2 + ∆f(xj)
2

Now suppose that the number of subdivisions N goes to infinity, then the
sum of the lengths of [Pj, Pj+1] will converge to the length of the curve.

But if the N goes to infinity, we will obtain an infinity of straight lines of
infinitesimal length dl given by:

dl2 =(dx)2 + df(x2
)

=(dx)2 +

(

df

dx

)2

dx2

=
(

1 + f ′(x)2
)

dx2

and
ds =

√

1 + f ′(x)2dx

Since the length of the curve is given by L =
∫ b

a
dl, we have:

L =

∫ b

a

√

1 + f ′(x)2dx.

f

∆x

∆f(x)

x

y

a bx1 x2 x3 x4

P0
P1 P2

P3

P4 P5

Figure 6: Length of a curve.
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We can use this formula for finding the circumference of a circle of radius
R. The equation of the circle of center O and radius R is:

x2 + y2 = R2.

The circle can be considered as made of two halfs (one in the half-plane
y ≥ 0 and one in the half-plane y ≤ 0). The circumference is then twice the
length of a half-circle.

The half-circle lying in the half-plane y ≥ 0 is the curve of the function
f(x) =

√
R2 − x2. To find the derivative of f we can derive the following

equations:
x2 + f(x)2 = R2,

which gives:
2x + 2f(x)f ′(x) = 0,

and then
f ′(x) = − x

f(x)
= − x√

R2 − x2
.

It follows that the circumference of the circle is :

S =2

∫ +R

−R

√

1 + f ′(x)2dx

=2

∫ +R

−R

√

1 +
x2

R2 − x2
dx

=2R

∫ +R

−R

1√
R2 − x2

dx

=2R
[

sin−1
( x

R

)]+R

−R

=2R
(

sin−1(1) − sin−1(−1)
)

=2R
(π

2
− (−π

2
)
)

=2πR.

3.4.4 Centroid of area under a curve

For a set of point masses (mi)1≤i≤N located at points (xi, yi)1≤i≤N , the cen-
troid has coordinates (x̄, ȳ) given by:

{

x̄ =
P

i mixi
P

i mi

ȳ =
P

i miyi
P

i mi

18



f

−f

x

y

R−R

Figure 7: Circumference of a circle.

Consider now the area under the curve of a function f for x ∈ [a, b]. The
coordinates of the centroid of this area can be obtained by considering this
area as an infinite sum of point masses dxdy at points (x, y), a ≤ x ≤ b,
0 ≤ y ≤ f(x).

In order to find the centroid we can even divide the area into infinitesimal
rectangles of width dx and height f(x) centered around x which has an

infinitesimal mass dM = |f(x)|dx and which centroid is located at
(

x,
f(x)

2

)

.

Then, the coordinates of the centroid of the area are given by:















x̄ =
1

A

∫ b

a

xdM

ȳ =
1

A

∫ b

a

f(x)

2
dM

where A is the total area:

A =

∫ b

a

f(x)dx.

Replacing dM by its expression in terms of x, we get:















x̄ =
1

A

∫ b

a

x|f(x)|dx

ȳ =
1

A

∫ b

a

f(x)

2
|f(x)|dx

19
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Figure 8: Centroid of an area under a curve.

This formula can be generalized to the area between two curves f and g,
where f(x) ≤ g(x) for any x ∈ [a, b]. In this case the infinitesimal rectangles
will have a width of dx and extend between f(x) and g(x) (instead of 0 and
f(x)), then their infinitesimal mass is given by dM = |g(x) − f(x)|dx and

their centroid is located at (x,
f(x)+g(x)

2
).

Then:

x̄ =
1

A

∫ b

a

xdM

=
1

A

∫ b

a

x|g(x) − f(x)|dx

and

ȳ =
1

A

∫ b

a

f(x) + g(x)

2
dM

=
1

A

∫ b

a

f(x) + g(x)

2
|g(x) − f(x)|dx

3.4.5 Moments of inertia

For a set of point masses (mi)1≤i≤N located at points (xi, yi)1≤i≤N , the mo-
ments of inertia Ix about the x axis, Iy about the y, and I0 about the origin

20
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Figure 9: Centroid of the area between 2 curves.

are given by:

Ix =
∑

i

y2
i mi,

Iy =
∑

i

x2
i mi,

I0 = Ix + Iy =
∑

i

(y2
i + x2

i )mi.

Now, suppose we have to determine the moment of inertia Iy of an area
extending between the curves of two functions y = f(x) and y = g(x),
f(x) ≤ g(x), as shown in Figure 10. We can divide this area into infinitesimal
rectangles of width dx extending between y = f(x) and y=g(x). All points
in such a rectangle are at a distance x from the y axis. The total mass of the
rectangle is dM = |g(x) − f(x)|dx. It follows that:

Iy =

∫ b

a

x2dM

=

∫ b

a

x2|g(x) − f(x)|dx

Let us now determine the moment of inertia Ix of the same surface about
the x axis. To do so, we can consider an infinitesimal element of surface of
width dx and height dy located at a point (x, y) of the surface as shown on
Figure 11. (this means that a ≤ x ≤ b and f(x) ≤ y ≤ g(x))
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Figure 10: Moment of inertial about y axis.

This element has a mass equal to d2M = dxdy and is located at a distance
y from the x axis. Its moment d2Ix is then given by:

d2Ix = y2d2M = y2dxdy.

Now consider the infinitesimal strip of width dx located at x and extend-
ing from f(x) to g(x). The moment of inertial of this strip about the x axis
is given by summing the moments of inertia of all elements dxdy located at
points (x, y) for y satisfying f(x) ≤ y ≤ g(x). This moment dIx is given by:

dIx =

∫ g(x)

y=f(x)

d2Ix

=

∫ g(x)

y=f(x)

y2d2M

=

∫ g(x)

y=f(x)

y2dxdy

=dx

∫ g(x)

y=f(x)

y2dy

=dx

[

y3

3

]g(x)

y=f(x)

=
g3(x) − f 3(x)

3
dx
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Finally to get the moment Ix of the total surface about the x axis, we have
to sum the moments dIX for x ∈ [a, b]:

Ix =

∫ b

x=a

dIx

=

∫ b

x=a

g3(x) − f 3(x)

3
dx

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

������������������

��

��

f(x)

g(x)

a b
x

y

x

y

y

dx

dy

Figure 11: Moment of inertial about x axis.

Suppose now that we consider the moment of inertial Ix about the x

axis of an area extending between the curves of two functions x = h(y) and
x = k(y), h(y) ≤ k(y), as shown in Figure 12. This moment can be found
dividing the area into infinitesimal rectangles of height dy extending between
x = h(y) and x = k(y). All points in such a rectangle are at a distance y

from the x axis. The total mass of the rectangle is dM = |k(y) − h(y)|dy. It
follows that:

Ix =

∫ b

a

y2|k(y) − h(y)|dy

We can apply these formula to find the moments of inertial for the area
defined by:

x2 + y2 ≤ 1, x ≥ 0, y ≥ 0.
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Figure 12: Moment of inertial about x axis.

To find Iy, we set a = 0, b = 1, f(x) = 0, and g(x) =
√

1 − x2. Then

Iy =

∫ 1

0

x2
√

1 − x2.

Define θ as x = sin θ, then dx = cos θdθ, and

Iy =

∫ π
2

0

sin2 θ
√

1 − sin2 θ cos θdθ

=

∫ π
2

0

sin2 θ cos2 θdθ

=

∫ π
2

0

(

1

2
sin(2θ)

)2

dθ

=
1

4

∫ π
2

0

1 − cos(4θ)

2
dθ

=
1

8

[

θ − sin(4θ)

4

]π
2

0

=
1

8

[π

2

]

=
π

16

Because of the symmetry of the shape, Ix = Iy.
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Figure 13: Moment of inertial of a quarter circle.

Definition 2. If the total mass of an area is M and its moment of inertial
is I, then we define the radius of gyration k about the corresponding axis by:

k2 =
I

M
.

Proposition 1. Let kx, ky, and ko be the radius of gyration about the x axis,
the y axis, and the origin respectively. Then:

k2
o = k2

x + k2
y.

This result is a direct consequence of the fact that:

Io = Ix + Iy,

which is a consequence of the obvious formula:

x2 + y2 = r2.

In fact, in the previous example, we can solve directly Io by dividing the
are into rings of infinitesimal width dr having a mass dM = 2πr

4
dr = πr

2
dr,
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and were each point is at a distance r from the origin. It follows that;

I0 =

∫ r

0

r2dM

=

∫ r

0

r2πr

2
dr

=

∫ r

0

πr3

2
dr

=
π

2

[

r4

4

]1

0

=
π

8

We can then check that

Ix + Iy =
π

16
+

π

16
=

π

8
= Io.

This relation can be useful to find one moment when the two other mo-
ments are known.

4 Numerical methods of integration

In many situations, we deal with integrals of complicated functions for which
it is impossible to find an explicit expression. To solve such integrals, we
use some numerical methods which allow us to find an approximate value
of the integral. These methods can be implemented on computers and their
precision depends on the discretization parameters. As the discretization
increases, the precision is improved, but at the same time, the need of time
and memory increases.

4.1 The trapezoidal rule

Suppose we have to find the integral between a and b of some function f .
Then we divide the interval [a, b] into N subintervals of equal length h = b−a

N
:

[xn, xn+1], 0 ≤ n ≤ N − 1, where xn = a + n b−a
N

= a + nh, 0 ≤ n ≤ N .

The integral I =
∫ b

a
f(x)dx can then be approximated by IN given by:

IN =
h

2

(

f(x0) + 2f(x1) + 2f(x2) + . . . + 2f(xN−2) + 2f(xN−1) + f(xN)

)

.

This formula comes from the fact that we approximate the area under
the curve by the sum of the areas of right trapezia of height [xn, xn+1] and
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for which the parallel sides have lengths f(xn) and f(xn+1). Its area is then
equal to h

2
(f(xn+1) + f(xn)).
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Figure 14: The trapezoidal rule.

4.1.1 Example

We can give an approximation of I =
∫ 5

1
dx√
1+x3

using 5 strips. We first define
x0 = 1, x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5. Then we compute I5 as
follows:

I5 =
1

2

(

f(x1) + 2f(x2) + 2f(x3) + 2f(x4) + f(x5)

)

.

We find I5 ≃ 1.8975.

4.2 The Simpson’s rule

The Simpson’s rule is another method for numerical integration. Its justifi-
cation is more complicated. However, for the same number of subdivisions,
the Simpson’s rule give a more accurate result than the trapezoidal rule.

The Simpson’s rule needs an even number of subdivisions 2N of the in-
terval of integration [a, b], defining intervals of width h = b−a

2N
which edges

are the points (xn)0≤n≤2N , xn = a+ b−a
2N

n. We have then x0 = a and x2N = b.
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The approximation of
∫ b

a
f(x)dx given by the Simpson’s rule IN is defined

by:

I2N =
h

3

(

f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . . + 2f(x2n−1)

+ 4f(x2n) + 2f(x2n+1) + . . . + 2f(x2N−2) + 4f(x2N−1) + f(x2N)

)

.

4.2.1 Example

Using the Simpson’s rule for finding an approximation of I =
∫ 5

1
dx√
1+x3

with
10 subdivisions, we get:

I10 =
1

3

(

f(1) + 4f(1.5) + 2f(2) + 4f(2.5) + 2f(3) + 4f(3.5) + 2f(4)

+ 4f(4.5) + 2f(5) + 4f(5.5) + 2f(6) + 4f(6.5) + 2f(7) + 4f(7.5)

+ 2f(8) + 4f(8.5) + 2f(9) + 4f(9.5) + f(10)

)

≃1.1913
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