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1 Motivation

Partial differentiation is useful in a number of contexts.

Calculating errors Partial differentiation is used to estimate errors in
calculated quantities that depend on more than one uncertain experimental
measurement.

Thermodynamics Thermodynamic energy functions (enthalpy, Gibbs free
energy, Helmholtz free energy) are function of two or more variables. Most
thermodynamic quantities (temperature, entropy, heat capacity) can be ex-
pressed as derivatives of these functions.

Financial engineering Financial engineers use partial derivatives to as-
sess a portfolio’s sensitivity to changes in market conditions (interest rates,
volatility). They can hedge against risk by designing portfolios which have
zero partial derivative with respect to market values.

Partial differential equations Many laws of nature are best expressed
as relations between the partial derivatives of one or more quantities. For
instance the Schrödinger equation describes all the laws of chemistry
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and the Navier-Stokes equation describes all fluid motion
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An unfortunate consequence of the generality of these equations is that they
are impossible to solve except for in a handful of special cases.

2 Introduction

Definition 1. A real function of several real variables is a function that
depends on more than one variable.

2.1 Examples

i) f1(x, y) = 2x+ 3y is a function of 2 variables.

ii) f2(x, y) = x2 − 4y3 is a function of 2 variables.

iii) f3(x, y) = 2xy2 − 4xey is a function of 2 variables.

iv) f4(x, y, z) =
xy
√

y+z3

x2+z2
is a function of 3 variables.

3 Partial differentiation

Consider a function of 2 variables f(x, y), then if we keep y fixed (y = y0),
we can define a new function of 1 variable g as follows:

g(x) = f(x, y0).

Definition 2. The derivative of g (with respect to x) is called the partial
derivative of f with respect to (w.r.t.) the first variable (x) and is denoted
by

∂f

∂x
(x, y0) = g′(x).
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If we keep constant x (x = x0), then we can define another new function h
as :

h(y) = f(x0, y).

The derivative of h (w.r.t. y) is called the partial derivative of f w.r.t. the
second variable (y) and is denoted by:

∂f

∂y
(x0, y) = h′(y).

3.1 Examples

i) f1(x, y) = 2x+ 3y, ∂f1
∂x

= 2 + 0 = 2, ∂f1
∂y

= 0 + 3 = 3.

ii) f2(x, y) = x2 − 4y3, ∂f2
∂y

= 2x− 0 = 2x, ∂f2
∂y

= 0− 12y2.

iii) f3(x, y) = 2xy2 − 4xey, ∂f3
∂x

= 2y2 − 4ey, ∂f3
∂y

= 4xy − 4xey.

3.2 Functions of more than 2 variables

In the case of a function depending on more than 2 variables, the partial
derivative w.r.t. one variable is the derivative of this function when we keep
constant all other variables.

Consider function f(x, y, z, t) (depending on 4 variables) defined by:

f(x, y, z, t) = 3xt2 cos(2yz2).

Then we can define 4 partial derivatives:

• ∂f

∂x
= 3t2 cos(2yz2)

• ∂f

∂y
= −6xt2z2 sin(2yz2)

• ∂f

∂z
= −12xyzt2 sin(2yz2)

• ∂f

∂t
= 6xt cos(2yz2)

4 Higher order partial derivatives

So far we have seen the first order partial derivatives which are obtained by
deriving once a function of several variables w.r.t. one variable.
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Suppose we have a function f(x, y), then we can define the function g as
the partial derivative of f w.r.t. x:

g(x, y) =
∂f

∂x
(x, y).

The function g depends on the same variables as f , and we can define its
partial derivatives: ∂g

∂x
and ∂g

∂y
.

We call the partial derivative of g w.r.t. x “the second-order partial deriva-
tive” of f w.r.t. x as it was obtained by deriving f twice w.r.t. x keeping y
constant and we denote it by:

∂2f

∂x2
=

∂

∂x

∂f

∂x
=

∂g

∂x
.

The partial derivative of g w.r.t y is called the second-order partial deriva-
tive of f with respect to x and then to y. It is denoted by:

∂2f

∂y∂x
=

∂

∂y

∂f

∂x
=

∂g

∂y
.

We can define the third-order partial derivatives of f as the partial deriva-
tives of the second-order partial derivatives of f or equivalently as the second-
order partial derivatives of the first-order partial derivatives of f .

Remark 1. For a function depending on 2 variables f(x, y) there exist

• 2 first-order partial derivative : ∂f

∂x
, ∂f

∂y
.

• 4 second-order partial derivatives : ∂2f

∂x2 ,
∂2f

∂y∂x
, ∂2f

∂x∂y
, ∂2f

∂y2
.

• 8 third-order partial derivatives : ∂3f

∂x3 ,
∂3f

∂y∂x2 ,
∂3f

∂x∂y∂x
, ∂3f

∂y2∂x
, ∂3f

∂x2∂y
, ∂3f

∂y∂x∂y
,

∂3f

∂x∂y2
, ∂3f

∂y3
.

• 2n nth-order partial derivatives.

The reason for that is that any partial derivative is in itself a function de-
pending on 2 variables for which we can define 2 partial derivatives ∂

∂x
and

∂
∂y
.

Proposition 1. Let f(x, y) be a function of two variables. Suppose that the

second-oder partial derivatives ∂2f

∂x∂y
and ∂2f

∂y∂x
are continuous. Then we have:

∂2f

∂x∂y
=

∂2f

∂y∂x
.
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4.1 Example

• f(x, y) = x2y3, ∂f

∂x
= 2xy3, ∂f

∂y
= 3x2y2,

∂2f

∂y∂x
=

∂

∂y
(2xy3) = 6xy2,

∂2f

∂x∂y
=

∂

∂x
(3x2y2) = 6xy2.

4.2 Evaluation at a point

We can evaluate the partial derivatives at a point in the same way we do it
for any function:

Suppose f(x, y) = x3 cos(2y), then ∂2f

∂x∂y
= −6x2 sin(2y). We can evaluate

these functions at (2, π
4
):

f(2,
π

4
) = 23 cos(2

π

4
) = 0,

∂2f

∂x∂y
(2,

π

4
) = −6(2)2 sin(2

π

4
) = −24.

5 Total differential

Definition 3. Let f(x, y) be a function of 2 variables. Then, we define the
total differential of f by the following expression:

df =
∂f

∂x
dx+

∂f

∂y
dy.

5.1 Interpretation

The previous expression is not a function or a number, it is just a formal
expression relating infinitesimal (infinitely small) changes in the variables
x and y, denoted by dx and dy respectively, to infinitesimal changes in f
denoted by df .

For a function of 3 variables, g(x, y, z), the total differential would be:

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.
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6 Application

The partial derivatives correspond to the rate of change of a function when
one variable changes.

Let f(x, y) be a function of 2 variables. Suppose that we change x from
its original value by δx. Then f(x, y) will change by δf such that:

f(x+ δx, y) = f(x, y) + δf,

which means that:
δf = f(x+ δx, y)− f(x, y).

If we divide both sides by δx (the quantity by which x changed), we get:

δf

δx
=

f(x+ δx, y)− f(x, y)

δx
.

On the right-hand side, we can identify clearly the rate of change of f
with respect to x which limit as δx goes to 0 is ∂f

∂x
.

It follows that the limit of δf

δx
as δx goes to 0 is ∂f

∂x
. We can deduce then,

that if δx is small enough we will be close to this limit, i.e. if δx is small
enough, then

δf

δx
≃ ∂f

∂x
,

or equivalently:

δf ≃ ∂f

∂x
δx.

An analogous result holds when we replace x by y.
Now suppose that both x and y change, then we will have:

δf ≃ ∂f

∂x
δx+

∂f

∂y
δy,

which means that the value of f will be affected by both changes with the
corresponding rates.

We recognize in the latter formula a similarity with the total differential.
There is however a substantial difference, in the total differential we have a
rigorous equality and the changes are infinitesimal (infinitely small), while
in the above formula, we have an approximate equality and the changes are
finite (small but finitely small).
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6.1 Example

Consider a triangle ABC of which we measure the lengths b and c and the
angle A (in radian). Suppose the measures are 120m, 85m, and π/6.

The area S of the triangle is then given by the formula:

S =
1

2
bc sin(A),

which for our measures gives S = 2550m2.
Now suppose that our measures were not exact. More precisely, we sup-

pose that when we measure b and c we have an error that is of at most 0.1m
and when we measure A we have an error of at most π/200.

This means that the exact value of b cannot be known, but we know from
our measure that this exact value stands between 120 − 0.1 = 119.9 and
120 + 0.1 = 120.1m.

Since the exact value of S is not accessible (because of the inevitable
errors on the measurements), we would like to have an interval to which S
belongs.

This can be done using partial derivatives. In fact, S is a function of 3
variables b, c, and A. Since the errors are small, we can write:

δS =
∂S

∂b
δb+

∂S

∂c
δc+

∂S

∂A
δA,

or

δS =
1

2
c sin(A)δb+

1

2
b sin(A)δc+

1

2
bc cos(A)δA.

The maximal error is obtained when we sum the absolute values of all
maximal errors:

δSmax =

∣

∣

∣

∣

1

2
c sin(A)

∣

∣

∣

∣

δbmax +

∣

∣

∣

∣

1

2
b sin(A)

∣

∣

∣

∣

δcmax +

∣

∣

∣

∣

1

2
bc cos(A)

∣

∣

∣

∣

δAmax.

We obtain δSmax = 74.5m2. It follows that the exact area Sexact satisfies:

2475.5m2 = S − δSmax ≤ Sexact ≤ S − δSmax = 2624.5m2.

7 Case of a compound function

Let f be a function depending on two variables x and y. Suppose that the
variables x and y depend on a third variable t, i.e. x = x(t) and y = y(t).

We define the function g depending on the variable t as:

g(t) = f
(

x(t), y(t)
)

.
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To determine the derivative g′ of g, we first write the total differential of
f :

df =
∂f

∂x
dx+

∂f

∂y
dy.

Then,

g′(t) =
dg

dt

=
df
(

x(t), y(t)
)

dt

=
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

Example

Suppose that in a rectangle of sides a and b the first side is increasing at a
speed of 2m s−1 and the second is decreasing at a speed of 4m s. What is
the rate of change of the diagonal d of the triangle?

We can think of the length a, b, and d as functions of the time t. Then :

d(t) =
√

a(t)2 + b(t)2.

If we define f as f(a, b) =
√
a2 + b2, then ∂f

∂a
= a√

a2+b2
and ∂f

∂b
= b√

a2+b2
. We

deduce then, that the rate of change of the length of diagonal is given by:

d′(t) =
∂f

∂a

da

dt
+

∂f

∂b

db

dt

=
a√

a2 + b2
a′(t) +

b√
a2 + b2

b′(t)

=
2a− 4b√
a2 + b2

.

8 Past exam questions

2006-7 (a) Find all second order partial derivatives of the following func-
tions: w = x2+xy2+xyz2; z = ex

2y. (b) The area of a rhombus is calculated
using the formula A = b2 sinC. Using the measured values of b = 4m and
C = 45◦ respectively. Find using partial differentiation the maximum er-
ror in the area as calculated if there is a maximum error of 0.3 cm in the
measurement of b and 0.5◦ in the measurement of C.
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2005-6 (a) Find all second order partial derivatives of the following func-
tions: z = x2

y+1
; w = cos (2xy). (b) The pressure, P , of an ideal gas is

calculated from the formula P = kT
V

where T is the temperature T = 20K1

and V = 1000 cm3. If the maximum error in T is 0.05K and in V is 2 cm3,
find, using partial differentiation and taking k = 1 the maximum error in P
as calculated.

1It actually says −20K in the question but that violates the third law of thermody-

namics.
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