

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

COLLEGE OF INFORMATICS AND ELECTRONICS

DEPARTMENT OF MATHEMATICS & STATISTICS

END OF SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4005

SEMESTER: Autumn 2006-07

MODULE TITLE: Engineering Maths T1 DURATION OF EXAM: 2.5 hours

LECTURER: J Leahy

GRADING SCHEME: **Examination**: 100%

EXTERNAL EXAMINER: Prof J King

INSTRUCTIONS TO CANDIDATES

Answer **One** (1) question from **each** Section A and B and any **three** (3) other questions. Five questions in total. All questions carry equal marks.

MA4005 Engineering Maths T1

SECTION A

Marks

- **1.a)** Find all second order partial derivatives of the following functions
 - (i) $w = x^2 + xy^2 + xyz^2$ (ii) $z = e^{x^2y}$

8

b)

The area A of a rhombus is calculated using the formula $A = b^2 \sin C$

Using the measured values of 4m and 45° for b and C respectively. Find using partial differentiation the maximum error in the area as calculated if there is a maximum error of 0.3cm in the measurement of b and 0.5° in the measurement of C.

12

2.a) Evaluate the integrals (i) $\int_0^1 \frac{dx}{(x-2)^3}$ (ii) $\int_2^{4\sqrt{3}-2} \frac{dx}{x^2+4x+20}$

8

b)

Find the volume generated when the area between the curve $y = 1 + x^3$ and the x - axis from x = 0 to x = 1 is rotated about the x-axis.

- 6
- **c)** Find the moment of inertia about the x axis of the area in (b).

6

3.a) Find the general solution of each of the differential equations

(i)
$$\frac{d y}{d x} - y \sin x = e^{-\cos x}$$

- (ii) $y'' + 2y = t^2 1$,
- 12

b)

The vertical motion of a buoy of mass m and cross – sectional area A floating in water of density ρ is given by the equation

 $\frac{d^2 z}{d t^2} + \frac{\rho A g}{m} z = g \text{ where } g > 0 \text{ is the gravitational constant.}$

Express z as a function of t.

MA4005 Engineering Maths T1

Marks

4.a) Calculate, from the definition, the Laplace transform of the function

$$f(t) = 1 - e^4$$

4

b)

Use the tables to find the Laplace transform of the functions

(i) $f(t) = 3 \cosh 4t - 2 \sin 2t$ (ii) $f(t) = t^4 e^{-2t}$

4

c) Find the inverse Laplace transform of the function

$$F(s) = \frac{s+2}{(4s+1)(s-1)}.$$

6

d)

Use the Laplace transform to find the solution of the boundary value problem

 $\frac{dy}{dt}$ -2y =5e^t y (o) = 0

5. Find the Fourier series of period 2π of the function $f(x + 2\pi) = f(x)$.

16 Use your answer to find an expression for π^2

MA4005 Engineering Maths T1 SECTION B

Marks

6.a) Prove (a + b + c) is a factor of the determinant

3

b)

Show the system of linear equations

x - y + z = 2 2x + y - z = 1 4x - y + z = 5has an infinite number of solutions and find two solutions.

6

c)

Find the inverse of the matrix

6

and hence solve the system

2x + y + z = 3-x + y + 3z = -7 4x + y + 2z = 5

5

7.a) State the axioms for a vector space.

4

b)

Show the set of all complex numbers a + bi, a, b ϵ R, i = $\sqrt{-1}$, with the usual addition and multiplication by a scalar is a vector space.

6

c) Show the vectors $\underline{u}_1 = (1, 1, 0), \underline{u}_2 = (2, 0, -3)$ and $\underline{u}_3 = (0, 1, 5)$ are linearly independent in R³.

5

d)

Determine if the set of vectors

 $\underline{v}_1 = (-1, -1, 0)$ $\underline{v}_2 = (-1, 0, -1)$ <u>v</u>₃ = (0, −1, −1) span R³

-5-

MA4005 Engineering Maths T1

8. If A: 120 is a matrix find
(i) the eigenvalues of A

7

(ii) the eigenvectors of A corresponding to any one of its eigenvalues.

6

(iii) the rank and mullity of A.