

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

COLLEGE OF INFORMATICS AND ELECTRONICS

DEPARTMENT OF MATHEMATICS & STATISTICS

END OF SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4005

SEMESTER: Autumn 2005-06

MODULE TITLE: Engineering Maths T1 E

DURATION OF EXAM: 2.5 hours

LECTURER: J. Leahy

GRADING SCHEME: Examination: 100%

EXTERNAL EXAMINER: Prof J King

INSTRUCTIONS TO CANDIDATES

Answer **One** (1) question from **each** Section A and B and any **three** (3) other questions – Five questions in total. All questions carry equal marks.

MA4005 Engineering Maths T1

SECTION A

Marks

1. a) Find all second order partial derivatives of the following functions

(i) $z = \frac{x^2}{y+1}$ (ii) $z = \cos(2xy)$

8

b) The pressure, P, of an ideal gas is calculated from the formula $P = \frac{k T}{V}$

where T is the temperature, V the volume and k a constant, using the measured values $T = -20^{\circ}$ K and $V = 1000 \text{ cm}^3$. If the maximum error in T is 0.05° K and in V is 2 cm^3 find using partial differentiation and taking k = 1, the maximum error in P as calculated.

12

2. a)

Evaluate the definite integrals

(i)
$$\int_{2}^{3} (x-3)^{2006} dx$$

8

(ii)
$$\int_{3}^{4} \frac{dx}{x^{2} + x - 2}$$

b)

Find the volume generated when the area under the curve $y = 2x^3$ from x = 0 to x = 1 is rotated about the x axis.

c) Find the centroid of the area in (b).

6

-3-

MA4005 Engineering Maths T1

Marks

3. a) Find the general solution of the differential equations

- (i) $\frac{dy}{dx} 3y = e^{2x}$ (ii) $y'' - 3y' + 2y = 5 \cos 2x$ 12
- **b)** The velocity v of a pendulum oscillating under the force of gravity satisfies the differential equation

$$v \frac{dv}{dx} = -k^2 x$$

where x is the displacement and k is a constant. Find v in terms of x if v = 10m/sec when x = 0.

8

4. a) Calculate from the definition the Laplace transform of the function

 $f(t) = 1 + e^{t}$

4

b) Use the tables to find the Laplace transform of the functions

(i) $f(t) = 2 \cosh t + 3 \sinh t$

(ii) $f(t) = u_{\pi}(t) \sin(t - \pi)$

4

c) Find the inverse Laplace transform of the function $F(s) = \frac{7s + 11}{s^2 + s - 6}$

6

d) Use the Laplace transform to find the solution of the boundary value problem

y'' - y' = 1, y(o) = y'(o) = 1

6

5. Find the Fourier series of period 2π of the function

 $f(x) = -x, \qquad -\pi < x \le \pi, \qquad f(x + 2\pi) = f(x).$

12

Sketch the graph of f(x) and use the series to find an expression for π **3 + 5 -4-**

MA4005 Engineering Maths T1

SECTION B

Marks

6. a) If the determinant

3

find x

b) Show that the matrix

3

has no inverse.

c) The currents i_1 , i_2 , i_3 of a circuit satisfy the system $2i_1 + i_2 - i_3 = 8$ $i_1 - i_2 + i_3 = -5$ $3i_1 + 2i_2 = 9$ Use matrices to evaluate i_1 , i_2 , i_3 .

14

7. a) Define a vector space.

4

b) Show the set of all linear forms ax + b forms a vector space.

6

c) Determine if the set of vectors $\underline{v}_1 = (-1, 0, 2), \underline{v}_2 = (3, 1, 4), \underline{v}_3 = (1, 1, 8)$ are linearly independent.

5

d) Determine if the set of vectors $\underline{u}_1 = (1, 0, 0), \underline{u}_2 = (1, 2, 0), \underline{u}_3 = (1, 2, 3)$ span R³.

MA4005 Engineering Maths T1

Marks

8.

Show that 2 is an eigenvalue of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ \cdot 1 & 2 & 2 \end{bmatrix}$$

and find the other eigenvalue.

7

Find the eigenvectors corresponding to the eigenvalue 2.

7

Find the rank and nullity of A.

6