

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

COLLEGE OF INFORMATICS AND ELECTRONICS

DEPARTMENT OF MATHEMATICS & STATISTICS

END OF SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4005

SEMESTER: Autumn 2004-05

MODULE TITLE: Engineering Maths T1 DURATION OF EXAM: 2.5 hours

LECTURER: J. Leahy

GRADING SCHEME: Examination: 100%

EXTERNAL EXAMINER: Prof J. King

INSTRUCTIONS TO CANDIDATES

Answer **One** (1) question from **each** Section A and B and any **three** (3) other questions – Five questions in total. All questions carry equal marks.

MA4005 Engineering Maths T1

Marks

SECTION A

1.a) Find all second partial derivatives of the following functions

(i)
$$z = \frac{x^2}{y^5}$$
 (ii) $z = e^{2x} + \sin(xy)$.

8

b) The volume of a cylinder is calculated from the formula

 $V = \pi r^2 h$

using the measurements r = 20cm, h = 30cm. The maximum error in the measurements of r and h is 0.05cm. Find using partial derivatives the maximum error in the calculated value of V.

12

2. a) Evaluate the integrals (i) $\int \frac{dx}{\sqrt{2-3x^2}}$

(ii)
$$\int \frac{dx}{x^2 - 3x + 2}$$

10

b) Find the centroid of the area bounded by the curve $y = x^2 + 1$, the x-axis, and the verticals x = 0 and x = 2.

10

3 a) Find the general solutions of the differential equations

(i)
$$\frac{dy}{dx} + xy = xy^2$$
 (ii)
 $y'' \rightarrow y = t^3 \rightarrow 1$

12

b) The current in a circuit is given by

$$L\frac{di}{dt} + Ri = E$$

where *L*, *R* and *E* are constants. Find the general solution for *i* in terms of t and the particular solution for which $i = i_o$ at t = 0. Show the terminal value of the current is $\frac{E}{R}$.

8

-3-

MA4005 Engineering Maths T1

Marks

4. a) Calculate from the definition the Laplace transform of the function

 $f(t) = 2e^{-3t}$

4

- **b)** Use the tables to find the Laplace transform of the functions
 - (i) $f(t) = 5 \cos 2t + \sin 3t$
 - (ii) $f(t) = t^3 e^{2t}$

4

c) Find the inverse Laplace transform of the function

$$F(s) = \frac{2s - 1}{4s^2 + 3s - 1}$$

d) Use the Laplace transform to find the solution of the boundary value problem.

$$2\frac{dy}{dt} - y = 2e^{2t}$$
, $y(0) = 3$.

6

5.

Find the Fourer series of period 2π of the function

$$\mathbf{f}(\mathbf{x}) = \begin{cases} 1 + x & 0 \le x \le \pi \\ 1 - x & -\pi \le x \le 0 \end{cases}$$

$$f(x + 2\pi) = f(x)$$

17

Use your answer to find an expression for π^2 .

MA4005 Engineering Maths T1

Marks

SECTION B

6. a) Evaluate the determinant

3	5	8
13	21	34
55	89	144

3

b) Show the system of linear equations

x + y + z = 1 2x - 3y + 2z = -3 4x - y + 4z = -1has an infinite number of solutions and find two solutions.

7

c) Find the inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 1 \\ 4 \cdot 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$$

and hence solve the system

$$2x + 3y + z = 9$$

 $4x - y + 2z = 4$
 $x + y + z = 4$.

-5-

MA4005 Engineering Maths T1

Marks

7. a) Define a vector space.

4

b) Show the set of all 2 x 2 matrices with real entries together with the operations of matrix addition and scalar multiplication is a vector space.

4

c) Show the vectors $u_1 = (1,0,3)$, $u_2 = (0,-1,4)$ and $u_3 = (2,3,-6)$ are linearly dependent in \mathbb{R}^3 .

6

d) Determine if the set of vectors

 $\underline{v}_1 = (1, 1, 2)$ $\underline{v}_2 = (1, 0, 1)$ $\underline{v}_3 = (2, 1, 3)$

span R³.

8. If
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 is a matrix find

.....

(i) the eigenvalues of A

7

(ii) the eigenvectors of A corresponding to any one of its eigenvalues.

7

and **(iii)** the rank and nullity of A.