

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

COLLEGE OF INFORMATICS AND ELECTRONICS

DEPARTMENT OF MATHEMATICS & STATISTICS

END OF SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4005

SEMESTER: Autumn 2003/04

DURATION OF EXAM: 2.5 hours

MODULE TITLE: Engineering Maths T1

LECTURER: J. Leahy

GRADING SCHEME: Examination: 100%

EXTERNAL EXAMINER: Prof. J.D. Gibbon

INSTRUCTIONS TO CANDIDATES

Answer **One** (1) question from each Section A and B and any three other questions – Five questions in total. All questions carry equal marks

Engineering Maths T1

Marks

SECTION A

Q.1 (a) Find all second partial derivatives of the following functions

(i)
$$z = x^2y^3$$
 (ii) $z = x \sin(xy)$ 8

 $S = \pi r(r+l)$

using the measured values of 2m and 3m for r and l respectively. Find using partial differentiation the maximum error in the area as calculated if there is a maximum error of 0.2cm in the measurement of each of r and l.

Q.2 (a) Evaluate the integrals

(i) $\int \frac{dx}{4x^2 + 1}$ (ii) $\int \frac{dx}{x^2 + 6x - 2}$ (iii) $\int \frac{x + \cos 2x}{x^2 + \sin 2x} dx$ 12

12

8

- (b) Find the perimeter of the area bounded by the curve $y = \cosh x$, the x-axis, the y-axis and the line $x = \ln 3$.
- **Q.3** (a) Find the general solutions of the differential equations

(i)
$$\frac{dy}{dx} + 2xy = e^{1-x^2}$$
 (ii) $y'' - y' = \sin x - \cos x$
12

(b) The vertical motion of a buoy of mass m and cross-sectional area A floating in water of density ρ is given by the equation

$$\frac{d^2 z}{dt^2} + \frac{\rho Ag}{m} z = g$$

Express z as a function of t.

-3-

Engineering Maths T1

Marks

Q.4(a)Calculate from the definition the Laplace transform of the function $f(t) = 1 - e^{-2t}$ 4(b)Use the tables to find the Laplace transform of the functions(i) $f(t) = 2 \cosh 2t - 3 \cos 3t$ (ii) $f(t) = e^{3t} \sin 5t$ (c)Find the inverse Laplace transform of the function

$$F(s) = \frac{4 + s^2 - 2s^3}{s^2(s^2 + 4)}$$
 6

(d) Use the Laplace transform to find the solution of the boundary value problem

$$y'' - y = e^{-t}$$
 $y(0) = \frac{1}{2}$ $y'(0) = 0$ 6

Q.5 A periodic function
$$f(x)$$
 with period 2 π is defined by

$$\mathbf{f}(\mathbf{x}) = \begin{cases} 2 & 0 \le x \le \pi \\ -2 & -\pi \le x < 0 \end{cases}$$

Sketch the graph of $f(x)$ for $-2\pi \le x \le 2\pi$	3	
and obtain a Fourier Series expansion of the function.		
Use the series to find an expression for π .	3	

Engineering Maths T1

SECTION B

Q.6 (a) Prove abc is a factor of the determinant

$$a$$
 b c a^2 b^2 c^2 a^3 b^3 c^3

(b) Show the system of linear equations

$$x + y = 1$$
$$y - z = 2$$
$$z + x = -1$$

1

has an infinite number of solutions and find two solutions.

(C) Find the inverse of the matrix

$$\mathbf{A} = \begin{vmatrix} 3 & 1 & 1 \\ 1 & 1 & \cdot 1 \\ 5 & \cdot 1 & \cdot 1 \end{vmatrix}$$

and hence solve the system

$$3x + y + z = 0$$

x + y - z = 2
 $5x - y - z = 0.$

5

7

Marks

- (b) Show the set of all 2 x 2 diagonal matrices with real entries together with the operations of matrix addition and scalar multiplication is a vector space.
- (c) Show the vectors $\underline{u}_1 = (1,2,3)$, $\underline{u}_2 = (2,-1,1)$ and $\underline{u}_3 = (0\ 1\ 2)$ are linearly independent in \mathbb{R}^3 .
- (d) Enlarge the set of vectors $\{(1, 0, 1), (0, 2, 0)\}$ to form a basis for \mathbb{R}^3 . 6

-5-

Engineering Maths T1

Marks

Q.8
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$
 is a matrix with an eigenvalue $\lambda_1 = 2$.

Find

(i)	the other eigenvalues of A.	6
(ii)	the eigenvectors of A corresponding to any one of its eigenvalues.	6
(iii)	the rank and nullity of A.	8

4

6

f(t)	F(s)
1	1
	S
t^n	n!
	s^{n+1}
t^{lpha}	$\Gamma(a+1)$
	$\overline{s^{\alpha+1}}$
e^{at}	1
	$\overline{s-a}$
sin <i>at</i>	a
	$\frac{1}{s^2 + a^2}$
cosat	S
	$\frac{3}{s^2+a^2}$
sinh at	
siin <i>u</i>	$\frac{a}{s^2 - a^2}$
	s - u
cosh at	$\frac{s}{-2}$
	s - a
$e^{at}f(t)$	F(s-a)

TABLE OF LAPLACE TRANSFORMS

$u_a(t)$	$\frac{e^{-as}}{s}$
$u_a(t)f(t-a)$	$e^{-as}F(s)$
tf(t)	-F'(s)
$t^n f(t)$	$(-1)^n F^{(n)}(s)$
f'(t)	sF(s)-f(0)
f''(t)	$s^2 F(s) - sf(0) - f'(0)$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
$\int_0^t f(u) du$	$\frac{1}{s}F(s)$
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(u) du$