Conservation of Energy

MS4414 Theoretical Mechanics

William Lee
Contents
1 Introduction 1
2 Uniform Gravitational field 2

1 Introduction

Conserved quantities are useful in mechanics: they allow oke short-cuts in calculations.

For example we have already encountered conservation ofemtiim. The principle of

conservation of momentum states that the momentum Do vy of a col-

lection of particles is a conserved quantity, provided theiples do not interact with any

external force fields. In collisions the momentum of particles befand after

the collisions are the same | This allows us calculate the velocities of the particles

after the collision without knowing any of the details of floeces acting between them (which

are unbelievably complicated and still the subject of red®a

Consevation of energy is similarly useful. Here we will loakcanservation of energy in
a uniform gravitational field. We will see that, if we are irdsted only in positions and

velocities, conservation of energy offers a simpler waydives problems.
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We will revisit conservation of energy when we discuss @asillisions, nonuniform gravi-

tational fields, and the Lagrangian and Hamiltonian measani

2 Uniform Gravitational field

Consider a mass falling in a gravitational figé= (0, —g). In this case momentum

is not

conserved. We will use Newton'’s laws of motion to show thatehis a function of the posi-

tion and velocity of the particle which is conserved i.e.d&ivative with respect to time is

zero | We will call the constant of integration theaergy.

Newton’s second law states that

mg = ma (1)
Take the dot product of both sides with the veatothe velocity of the particle.
mv-g = mv-a (2)
Write v anda in terms of the displacemeatof the particle.
ds ds d’s
me(g) = (3) (&) )
We can rewrite both sides as total derivatives and intedratendg are constants)
d d |1 [ds)?
el s = — | = = 4
o "8 S = g [2m<dt) ] @)
d d
5 (me-9) = g (mv?) ®)
d
0= & (Amv® —mg - s) (6)
wherev? =  v-v
As promised, we have a quantity whose derivative is zercs it@ans the quantity|is cons
Integrate to obtain a constant of integration | shall cadl ¢émergyF.
E:%mv2—mg-s (7)
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Writing this out in component form witg = (0, —g), v = (v, vy), s = (z,y)
E = %m (vi + vj) + mgy (8)

smv? is calledkinetic energy, andmgy is calledpotential energy.

Worked Example On Earth, humans can run at up to 10 ms~* and pole vault up to about

5 m. Show that these involve similar energies.

The kinetic energy of a sprinter of massrunning with velocityv is mu? . Tak-

[Nl

Ing a typical mass of a sprinter gs m = 80kg , the kinetic energy gener-

ated by the sprinter is 2% 80 x 10? = 4kJ

The potential energy of a pole-vaulter at the top of the jusp i mgh . Again, taking

the mass of the athlete as m = 80kg and acceleration due to gravity as

S 80 x

g=10ms2 , the potential energy of the athlete

Therefore the kinetic energy of the sprinter and the patéetiergy of the pole-vaulter are

equal

Worked Example A stoneis thrown up in the air with initial velocity v = 10 ms~!. What
is the maximum height reached by the stone? How high is the stone when its velocity is

—5ms !? Take g = 10 ms™! and neglect air resistance.
First we will solve this problem the old fashioned way usihg kinematic equations. Then

we will check that using conservation of energy gives theesanswers.

Kinematics The equations for the positianand velocityv of an object thrown directly up-

wards in g uniform gravitational fieldg are

v = vg — gt
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Yo + vot — 5gt°

In our casey, = 10m

§1

The maximum height is reached Wh%‘ﬂ also known a

andy, = @

1°4
<

,is

Zero

. This occurs at

time ¢, which is given by

vo/g=1s

maximum

value,y;. Thisis

e

50m

The time at which the velocity has reached= —5ms!is

t2:

(vo —v2) /g

1.5s

At this time the height of the particlg, is given by

Yo =

vota — %gt%

. Whent = t, y has obtained its

3.75m

Energy Now use conservation of energy to obtain the same resultsembrgy of the system

is the sum of kinetic and potential energy.
1 2
E = §mv + mgy
Initially the height of the particle ig, = | 0 |and its velocity i)y = 10ms!
The total energy of the particle is
E = %mvg
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When the particle has reached its maximum heighthe velocity of the particle is; = @

Therefore the kinetic energy of the particle

S Zero.

The potential energy must be

equal to the total energy . Therefore
E = %mvg = mgy,
Solving fory, gives
2
(Y
Y = 2 =| 50 |m
29

At heightys, the velocity of the particle is, = —5ms™t. At that point the kinetic energy of
the particle is

and the potential energy is

mgys

The sum of the potential and kinetic energies is

the totalggne , there-
fore
1 2 1 2
5Mmug §m02 + mgiyo
Solving this equation foy, gives
2,2
Yo = Y~ % —| 375 |m
29

Worked Example A stoneisdropped fromfroma height of 125 m. What isits vel ocity when
it hits the ground? Take ¢ = 10 ms~! and neglect air resistance.

Again, first solve this using the kinematic equations and e energy arguments.
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Kinematics We use the kinematic equation

Y =1yo+ vot — 3

gt?

withyo =| 125

ground. At thistimey = y; = @m

t1

m andvy = | 0

20
g

ms~! to find ¢; the time at which the stone hits the

Now we know the time at which the stone hits the ground we carthes kinematic equation

v=1vy— gt

with vy = @m s !, to find the velocityy, of the stone as it hits the ground at tirhe

Vo =

—gto

—30

ms

1

Energy Now do the same thing using energy arguments Initially thghteof the stone is

125

Yo

m and so its potential energy

is

mgyo

. The velocity of the stone

ISvy = Bm s and so the kinetic energ. The total energy of the system is therefore

E= mgyo

When the stone hits the ground its heightjis= @m and its velocity iz;. The potential

energy of the system and the kinetic energy of the systemis imuv?

the total energy at the two points

. Equating

2

mgyo

1
2

2
_m/Ul

Solving forv; gives (don't forget sign)

V1 =

—v/29Y0

—50

ms
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Kinematics or Conservation of Energy? Where possible use conservation of energy: it is
simpler. In the examples above we only used one energy equatit needed two kinematic
equations. However, it is not possible to use energy argtsmerwork out times—the whole
point if the conservation of energy is time independenceif 8 question requires you to

work out, or use, a time you will have to use the kinematic équa.

In an exam (or if large sums of money or someones life depengbargetting the correct

answer) calculate both ways as a check on the answer—if ymitimae.
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